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Abstract. The Hilbert spaceL2(R3), to which the wavefunction of the three-dimensional
Schr̈odinger equation belongs, has been replaced byL2(�), where� is a bounded region.
The energy spectrum of the usual unbounded system is then determined by showing that the
Dirichlet and Neumann problems inL2(�) generate upper and lower bounds, respectively, to
the eigenvalues required. Highly accurate numerical results for the quartic and sextic oscillators
are presented for a wide range of the coupling constants.

1. Introduction

The determination of the spectra of one-dimensional quantum oscillators is 30-year old
science with many reliable methods developed to cope with the associated computational
problem [1–6]. In spite of the existence of several moment-based asymptotic [3, 7] and
perturbative [8–12] eigenenergy estimation techniques in two dimensions, however, the
problem is still interesting from both numerical and theoretical viewpoints. In fact, a
perturbation series expansion over the classical harmonic oscillator solution is divergent-
asymptotic, which was verified explicitly by Bender and Wu [13] in their important
investigation into the quartic oscillator. Therefore, the methods starting with the use of
a harmonic-like reference function usually show weak convergence properties, especially
for strong anharmonic couplings [10, 12].

On the other hand, studies on the three-dimensional perturbed oscillators are rather
limited, and few reported results are available in the literature [14]. Because most of the
methods lead to the evaluation of multiple-infinite series or recursions, the solution of the
wave equation in higher-dimensional spaces is quite complicated. Fortunately, the difficulty
has been lessened considerably by the advent of powerful computers.

In the preceding articles, Tas¸eli and co-workers [15–19] have focused on truncating the
infinite domain of the Schrödinger equation and modifying asymptotic conditions at infinity.
In one and two dimensions, it was shown that the Dirichlet and Neumann problems yield
an excellent accuracy through converging upper and lower bounds to the energy levels
of the corresponding unbounded system. Thus the present paper deals mainly with a
straightforward generalization and extension of these earlier works to the more challenging
three-dimensional eigenvalue problems.

We consider the appropriately scaled Schrödinger equation in the form

[−∇2+ V (x, y, z)]9(x, y, z) = E9(x, y, z) 9 ∈ L2(R3) (1.1)
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with a general polynomial potential of degreeM

V (x, y, z) =
M∑
m=1

v2m

m∑
l=0

(
m

l

) l∑
k=0

(
l

k

)
am−l,l−k,kx2(m−l)y2(l−k)z2k v2M > 0 (1.2)

in x2, y2 and z2, wherev2m and am−l,l−k,k are the coupling constants. The domainR3 is
truncated to a bounded domain, which is defined as a cubic box of sides 2` units length,

� = {(x, y, z) : −` 6 x, y, z 6 `} (1.3)

preserving the symmetry of the original unbounded domain about the origin. Therefore, the
potential in (1.2) has clearly the reflection symmetries

V (x, y, z) = V (±x,±y,±z) (1.4)

and, furthermore, interchange symmetries of three coordinates

V (x, y, z) = V (x, z, y) = V (y, x, z) = V (y, z, x) = V (z, x, y) = V (z, y, x) (1.5)

provided that

am−l,l−k,k = am−l,k,l−k = al−k,m−l,k = al−k,k,m−l = ak,m−l,l−k = ak,l−k,m−l (1.6)

for m = 1, 2, . . . ,M, l = 0, 1, . . . , m, and k = 0, 1, . . . , l. Note that the wavefunction
9(x, y, z) will then satisfy the same symmetries as well.

As indicated, we assume the Dirichlet

9(±`, y, z) = 9(x,±`, z) = 9(x, y,±`) = 0 (1.7)

and Neumann conditions

9x(±`, y, z) = 9y(x,±`, z) = 9z(x, y,±`) = 0 (1.8)

over the surfaces of the box. Now the eigenvalues of (1.1) in� may be regarded as a
function of the confinement parameter`. So if they are denoted byE+(`) in the case of the
Dirichlet conditions, then it can be shown, in analogy with the one- and two-dimensional
problems [17, 18], that

dE+

d`
= −2

∫ `

−`

∫ `

−`
92
x (`, y, z)dy dz− 2

∫ `

−`

∫ `

−`
92
y (x, `, z)dx dz

−2
∫ `

−`

∫ `

−`
92
z (x, y, `)dx dy (1.9)

and that dE+/d` is definitely negative (see the appendix). Thus the eigenenergiesE+(`)
of the Dirichlet problem decrease monotonically as` increases providing upper bounds to
those of the unbounded system, where`→∞.

In a similar fashion, the eigenvalues,E−(`) say, of the Neumann problem lead to the
relation

dE−

d`
= 2

∫ `

−`

∫ `

−`
{[V (`, y, z)− E−]92(`, y, z)+92

y (`, y, z)+92
z (`, y, z)} dy dz

+2
∫ `

−`

∫ `

−`
{[V (x, `, z)− E−]92(x, `, z)+92

x (x, `, z)+92
z (x, `, z)} dx dz

+2
∫ `

−`

∫ `

−`
{[V (x, y, `)− E−]92(x, y, `)+92

x (x, y, `)+92
y (x, y, `)} dx dy

(1.10)
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which remains strictly positive, if|`| is beyond the classical turning points (see the
appendix). It should be noted that this restriction on the confinement parameter` is not
necessary but sufficient to make dE−/d` always positive. Therefore, the eigenvalues of the
Neumann problem is an increasing function of` yielding lower bounds to the asymptotic
eigenvalues.

In the appendix, an explicit proof on the decreasing and increasing behaviour ofE(`)

stated by (1.9) and (1.10) is presented. As an important consequence, the Dirichlet and
Neumann boundary value problems generate error bounds to the energy levels of the usual
system onR3, in the sense that

E−(`) < E < E+(`). (1.11)

Hence, in section 2 we establish a variational method by means of simple trigonometric
basis functions to determineE+ as well asE− for an arbitrary polynomial in (1.2). In
section 3, the procedure is applied to particular problems including the quartic and sextic
oscillators. The last section concludes the paper with a discussion of the results.

2. Variational formulation with simple trigonometric bases

By introducing the coordinate transformations,

ξ = π

`
x η = π

`
y ζ = π

`
z (2.1)

the Schr̈odinger equation in (1.1) becomes

[−∇2+ ν2V (νξ, νη, νζ )]9(ξ, η, ζ ) = ν2E(`)9(ξ, η, ζ ) ν = `

π
(2.2)

with the scaled domain�,

� = {(ξ, η, ζ ) : −π 6 ξ, η, ζ 6 π}. (2.3)

If we first consider the wave equation for the motion of a free particle

∂29

∂ξ2
+ ∂

29

∂η2
+ ∂

29

∂ζ 2
+ λ9(ξ, η, ζ ) = 0 (2.4)

where the potential has been taken as

V (ξ, η, ζ ) =
{

0 inside�

∞ outside�
(2.5)

it is an easy matter to obtain exact analytical eigensolutions. Thus the normalized sequences
of functions

φijk(ξ, η, ζ ) = π−3/2 cos(i + 1
2)ξ cos(j + 1

2)η cos(k + 1
2)ζ (2.6a)

φijk(ξ, η, ζ ) = π−3/2 cos(i + 1
2)ξ cos(j + 1

2)η sin(k + 1)ζ (2.6b)

φijk(ξ, η, ζ ) = π−3/2 cos(i + 1
2)ξ sin(j + 1)η cos(k + 1

2)ζ (2.6c)

φijk(ξ, η, ζ ) = π−3/2 sin(i + 1)ξ cos(j + 1
2)η cos(k + 1

2)ζ (2.6d)

φijk(ξ, η, ζ ) = π−3/2 sin(i + 1)ξ sin(j + 1)η cos(k + 1
2)ζ (2.6e)

φijk(ξ, η, ζ ) = π−3/2 sin(i + 1)ξ cos(j + 1
2)η sin(k + 1)ζ (2.6f)

φijk(ξ, η, ζ ) = π−3/2 cos(i + 1
2)ξ sin(j + 1)η sin(k + 1)ζ (2.6g)
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and

φijk(ξ, η, ζ ) = π−3/2 sin(i + 1)ξ sin(j + 1)η sin(k + 1)ζ (2.6h)

satisfy (2.4) and the Dirichlet boundary conditions whenλ values are properly chosen for
all i, j, k = 0, 1, . . . . Furthermore, the functions

ϕijk(ξ, η, ζ ) = Nijk π−3/2 cosiξ cosjη coskζ (2.7a)

ϕijk(ξ, η, ζ ) =
√

2Ni,j,0π−3/2 cosiξ cosjη sin(k + 1
2)ζ (2.7b)

ϕijk(ξ, η, ζ ) =
√

2Ni,0,k π−3/2 cosiξ sin(j + 1
2)η coskζ (2.7c)

ϕijk(ξ, η, ζ ) =
√

2N0,j,k π
−3/2 sin(i + 1

2)ξ cosjη coskζ (2.7d)

ϕijk(ξ, η, ζ ) = 2N0,0,k π
−3/2 sin(i + 1

2)ξ sin(j + 1
2)η coskζ (2.7e)

ϕijk(ξ, η, ζ ) = 2N0,j,0π
−3/2 sin(i + 1

2)ξ cosjη sin(k + 1
2)ζ (2.7f)

ϕijk(ξ, η, ζ ) = 2Ni,0,0π−3/2 cosiξ sin(j + 1
2)η sin(k + 1

2)ζ (2.7g)

and

ϕijk(ξ, η, ζ ) = π−3/2 sin(i + 1
2)ξ sin(j + 1

2)η sin(k + 1
2)ζ (2.7h)

are solutions of (2.4) with Neumann conditions, whereNijk is a normalization constant
defined by

Nijk = [(1+ δi,0)(1+ δj,0)(1+ δk,0)]−1/2 (2.8)

in which δij stands for the Kronecker delta. The 16 sets of functions in (2.6) and (2.7)
comprise complete orthonormal bases for the Hilbert spaceL2(�) which, henceforth, are
referred to asS+1 , S+2 , S+3 , S+4 , S+5 , S+6 , S+7 , S+8 and S−1 , S−2 , S−3 , S−4 , S−5 , S−6 , S−7 , S−8 ,
respectively.

On the other hand, since the wavefunction of the full Schrödinger equation (2.2) belongs
to the same space spanned by theφijk or ϕijk, we can propose the solutions

8+(ξ, η, ζ ) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

hijk φijk(ξ, η, ζ ) (2.9)

and

8−(ξ, η, ζ ) =
∞∑
i=0

∞∑
j=0

∞∑
k=0

fijk ϕijk(ξ, η, ζ ) (2.10)

for the Dirichlet and Neumann problems, respectively, wherehijk andfijk are the expansion
coefficients. The energy levels of a three-dimensional oscillator being considered are
characterized by three quantum numbersn1, n2 and n3, i.e. E ≡ En1n2n3. The spectrum
can be decomposed into eight subsets owing to the reflection symmetries of the potential in
(1.2). It is worth mentioning that the structures of the present bases give the possibility of
taking care of these subsets individually in a natural way. In fact, the setsS+1 (S−1 ) andS+8
(S−8 ) can be used in the expansions (2.9) or (2.10) to determine the discrete states with the
same parity, namely, three even or three odd. However, the eigenvalues with mixed parity,
two even and one odd or one even and two odd, should be investigated by means of the
others.

Hence the substitution of (2.9) into (2.2) reduces the Schrödinger equation to the secular
equations

∞∑
l=0

∞∑
m=0

∞∑
n=0

[Hijklmn − ν2E+(`)δilδjmδkn]hlmn = 0 (2.11)
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for i, j, k = 0, 1, . . . , with

Hijklmn =
∫ π

−π

∫ π

−π

∫ π

−π
φlmn[−∇2+ ν2V (νξ, νη, νζ )]φijk dξ dη dζ. (2.12)

The entriesHijklmn are nicely written in a compact form

Hijklmn = 1

4

[
(2i + 1+ p1)

2+ (2j + 1+ p2)
2+ (2k + 1+ p3)

2
]
δilδjmδkn

+ν2
M∑
I=1

v2I ν
2I

I∑
J=0

(
I

J

) J∑
K=0

(
J

K

)
aI−J,J−K,K [R(I−J )i−l + s1R(I−J )i+l+1+p1

]

×[R(J−K)j−m + s2R(J−K)j+m+1+p2
][R(K)k−n + s3R(K)k+n+1+p3

] (2.13)

whereR(j)k denote the simple integrals of the type

R
(j)

k =
1

π

∫ π

0
θ2j coskθ dθ. (2.14)

In this definition ofHijklmn we have introduced the integer parameterss1, s2, s3, p1, p2 and
p3 to include every basis in (2.6), such that

s1 = s2 = s3 = 1 p1 = p2 = p3 = 0 (2.15a)

s1 = s2 = 1 s3 = −1 p1 = p2 = 0 p3 = 1 (2.15b)

s1 = 1 s2 = −1 s3 = 1 p1 = 0 p2 = 1 p3 = 0 (2.15c)

s1 = 1 s2 = s3 = −1 p1 = 0 p2 = p3 = 1 (2.15d)

s1 = −1 s2 = s3 = 1 p1 = 1 p2 = p3 = 0 (2.15e)

s1 = 1 s2 = 1 s3 = −1 p1 = 1 p2 = 0 p3 = 1 (2.15f)

s1 = s2 = −1 s3 = 1 p1 = p2 = 1 p3 = 0 (2.15g)

and

s1 = s2 = s3 = −1 p1 = p2 = p3 = 1 (2.15h)

for the sets,S+1 –S+7 andS+8 , respectively.
Starting from the solution8−(ξ, η, ζ ), which obeys the Neumann conditions, we obtain

again an algebraic system of equations in the form
∞∑
l=0

∞∑
m=0

∞∑
n=0

[Fijklmn − ν2E−(`)δilδjmδkn]flmn = 0 (2.16)

for i, j, k = 0, 1, . . . , with

Fijklmn = 1

4
[(2i + p1)

2+ (2j + p2)
2+ (2k + p3)

2]δilδjmδkn

+σν2
M∑
I=1

v2I ν
2I

I∑
J=0

(
I

J

) J∑
K=0

(
J

K

)
aI−J,J−K,K [R(I−J )i−l + s1R(I−J )i+l+p1

]

×[R(J−K)j−m + s2R(J−K)j+m+p2
][R(K)k−n + s3R(K)k+n+p3

]. (2.17)

Here, the parameterss1, s2, s3, p1, p2 and p3 defined by (2.15) are also used for the
Neumann basis sets in (2.7). Moreover, an additional adjustable parameterσ has been
introduced which should be taken as

σ = NijkNlmn σ = 2Ni,j,0Nl,m,0 σ = 2Ni,0,kNl,0,n σ = 2N0,j,kN0,m,n

(2.18a)
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and

σ = 4Ni,0,0Nl,0,0 σ = 4N0,j,0N0,m,0 σ = 4N0,0,kN0,0,n σ = 1 (2.18b)

for S−1 –S−4 andS−5 –S−8 , respectively.
On the numerical side of the work, we deal with the truncated solutions

8+(ξ, η, ζ ) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

hijk φijk(ξ, η, ζ ) (2.19)

and

8−(ξ, η, ζ ) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

fijk ϕijk(ξ, η, ζ ) (2.20)

whereN is the truncation order. In this case, the equations in (2.11) and (2.16) describe
finite algebraic systems of orderN3. As long asN remains finite it can be deduced, by
recoding the indexes ofHijklmn andFijklmn, that these systems are expressible in the form
of standard matrix eigenvalue problems. In fact, if we define the integer transformationT ,
T : N6

0→ N2,

T = {(I, J ) ∈ N2 : I = lN2+mN + n+ 1 andJ = iN2+ jN + k + 1,

∀(i, j, k, l, m, n) ∈ N6
0} (2.21)

thenHijklmn (Fijklmn) andδilδjmδkn are converted to a matrix [AIJ ] and the identity matrix
[δIJ ] of ordersN3, respectively, whereN = {1, 2, . . .} is a subset of the set of natural
numbers andN0 = {0} ∪ N. Similarly, the mappingS, S : N3

0→ N,

S = {J ∈ N : J = iN2+ jN + k + 1, ∀ (i, j, k) ∈ N3
0} (2.22)

transformshijk (fijk) with i, j, k = 0, 1, . . . , N − 1 into bJ with J = 1, 2, . . . , N3. Hence
we may represent (2.11) and (2.16) in the form

N3∑
J=1

(AIJ − ν2E δIJ )bJ = 0 I = 1, 2, . . . , N3. (2.23)

It should be noted that the matrix [AIJ ] is symmetric due to the block symmetry ofHijklmn
(Fijklmn), i.e. Hijklmn = Hlmnijk (Fijklmn = Flmnijk).

3. Applications to quartic and sextic oscillators

The generalized anharmonic oscillators are being investigated with considerable intensity,
motivated by quantum mechanical problems in field theory and molecular physics. A
detailed review of the anharmonic eigenvalue problems is outside the scope of this article,
but they provide a convenient testing ground for the present approximation.

In table 1, we calculate the ground-state eigenvalue of the quartic oscillator,

V (x, y, z) = x2y2+ x2z2+ y2z2 (3.1)

to illustrate how the method can be applied in finding error bounds as the confinement
parameter̀ varies. To denote lower and upper bound results we employ the notation
wherein, for example, 1/3 means that the eigenvalue is bounded by 1< E0,0,0 < 3, if
` = 2.0. Similarly, 2.169 856 706 36/95 at ` = 6.05 implies more rigorous two-sided
bounds such that 2.169 856 706 36< E0,0,0 < 2.169 856 706 95. As another specific
example, we examine the lowest three energy levels of the sextic oscillator

V (x, y, z) = x2+ y2+ z2+ v6(x
6+ y6+ z6+ 6x2y2z2) (3.2)
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Table 1. Lower and upper bounds to the ground-state eigenvalue of the quartic oscillator in
(3.1), as a function of the confinement parameter`.

` N E0,0,0

2.00 4 1/3
2.50 4 2.105/228
3.00 5 2.1598/788
3.50 6 2.1686/710
4.00 7 2.169 74/97
4.50 9 2.169 847/66
5.00 11 2.169 8561/74
5.50 12 2.169 856 68/73
5.75 13 2.169 856 700/14
6.05 14 2.169 856 706 36/95

Table 2. Lower and upper bounds to the first three eigenvalues of the sextic oscillator in (3.2)
wherev6 = 106, as a function of the confinement parameter`.

` N E0,0,0 E0,0,1 = E0,1,0 = E1,0,0 E1,1,0 = E1,0,1 = E0,1,1

0.325 5 112/4 218/22 330/6
0.350 5 113.24/43 219/21 333/5
0.375 6 113.333/51 220.025/74 333.665/773
0.400 7 113.3423/33 220.0497/524 333.6998/7035
0.425 9 113.342 760/87 220.051 079/161 333.701 666/778
0.450 11 113.342 773 57/97 220.051 120 77/202 333.701 723 21/491
0.475 12 113.342 773 7740/72 220.051 121 407/17 333.701 724 080/94
0.485 13 113.342 773 775 18/23 220.051 121 4116/23 333.701 724 0866/76

in the same manner to check if there is any difficulty in passing from a quartic oscillator to
such a sextic oscillator with a very largev6 value of 106 (table 2).

For the sake of a systematic numerical analysis, we may consider the general form of a
quartic oscillator which is obtainable from (1.2) withM = 2. If we assume the interchange
symmetries in (1.5) of the coordinates and introduce a simple scaling transformation, this
potential can be written concisely in the form

V (x, y, z) = x2+ y2+ z2+ c4[x4+ y4+ z4+ 2α(x2y2+ x2z2+ y2z2)] (3.3)

involving only two effective coupling constantsc4 and α. It is apparent that for a non-
negative quartic anharmonicityc4 should be necessarily positive. The case ofc4 = 0 leads
to the harmonic oscillator which is trivial. Moreover, the condition

α > − 1
2 (3.4)

is sufficient to make the potential bounded below. In the two-dimensional problems, it
is possible to find unitary transformations which suggest that the eigenvalue equation can
be investigated in the range ofα, −1 6 α 6 1, without any loss of generality [9, 18].
Unfortunately, however, there are no such transformations in three-dimensional space, and
the only restriction onα is given by (3.4). Therefore, the lower and upper bound energy
levels of the quartic oscillator are reported forc4 values of 10−3, 1, and 103 in tables 3, 4
and 5, respectively, as a function ofα by takingα = − 1

2, 0, 1 and 10.
Finally, we deal with the sextic oscillator in (1.2), wherev4 = 0 andM = 3. On

making use of a linear scaling and taking advantage of the interchange symmetries of the
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Table 3. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
c4 = 10−3, as a function ofα.

α `cr N {n1, n2, n3} En1n2n3 Basis set

− 1
2 5.50 11 {0, 0, 0} 3.001 497 851 40/1 S−1 /S

+
1

5.80 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.003 492 259 84/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.70 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.004 490 764 08/10 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.86 11 {0, 0, 2} 7.007 471 819 65/7 S−1 /S
+
1

5.87 11 {0, 2, 0} – {2, 0, 0} 7.008 969 294 02/3 S−1 /S
+
1 – S−1 /S

+
1

5.70 11 {1, 1, 1} 9.004 491 880 91/5 S−8 /S
+
8

6.05 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 9.007 802 185 74/6 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

6.05 12 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 9.008 974 855 87/9 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

6.05 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 9.016 592 212 86/99 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

0 5.50 11 {0, 0, 0} 3.002 246 078 01/3 S−1 /S
+
1

5.70 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.005 237 133 51/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.80 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.008 228 189 00/2 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.90 12 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 7.011 209 258 11/6 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

5.70 11 {1, 1, 1} 9.011 219 244 49/53 S−8 /S
+
8

6.05 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – 9.014 200 313 62/4 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

6.05 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 9.020 149 977 33/47 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1 5.50 11 {0, 0, 0} 3.003 739 748 16/8 S−1 /S
+
1

5.80 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.008 717 444 47/8 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.80 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 7.015 675 918 90/1 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

5.80 11 {2, 0, 0} 7.018 652 592 02/10 S−1 /S
+
1

5.70 11 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{1, 1, 1} – 9.024 609 354 58/62 S−8 /S
+
8 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.90 11 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 9.029 559 527 40/70 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.90 11 {1, 1, 2} – {1, 2, 1} – {2, 1, 1} – S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 2, 2} – {2, 0, 2} – {2, 2, 0} – 11.035 511 979 7/801 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1 –

{1, 3, 0} – {1, 0, 3} – {0, 1, 3} S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

10 5.50 11 {0, 0, 0} 3.017 020 559 64/6 S−1 /S
+
1

5.80 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.039 496 417 84/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

6.00 12 {0, 0, 2} – {0, 2, 0} 7.055 114 700 35/7 S−1 /S
+
1 – S−1 /S

+
1

5.70 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.081 161 427 04/6 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

6.00 12 {2, 0, 0} 7.083 853 177 49/51 S−1 /S
+
1

6.00 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 9.082 310 599 92/7 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

6.00 12 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 9.115 917 452 33/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.60 11 {1, 1, 1} 9.141 495 012 62/7 S−8 /S
+
8

6.10 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 9.144 988 944 00/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

coordinates, we again minimize the number of coupling constants. So the potential is
characterized by the function

V (x, y, z) = x2+ y2+ z2+ c6[x6+ y6+ z6+ 3β(x4y2+ x4z2+ x2y4+ x2z4+ y4z2

+y2z4)+ 6γ x2y2z2] (3.5)

with three parametersc6, β andγ . Here,c6 > 0, and it can be shown after some algebra that

6β + 2γ > −1 (3.6)

for a required non-negative sextic anharmonicity, ifγ 6= 1. Forγ = 1, we must have

β > − 1
3. (3.7)
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Table 4. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
c4 = 1, as a function ofα.

α `cr N {n1, n2, n3} En1n2n3 Basis set

− 1
2 3.50 11 {0, 0, 0} 3.854 803 298 31/3 S−1 /S

+
1

3.65 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 6.730 816 582 27/8 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.75 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 9.272 020 739 68/70 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

3.65 12 {0, 0, 2} 9.949 866 733 32/49 S−1 /S
+
1

3.50 11 {0, 2, 0} – {2, 0, 0} 10.690 701 5341/5 S−1 /S
+
1 – S−1 /S

+
1

3.65 11 {1, 1, 1} 11.412 029 2020/9 S−8 /S
+
8

3.65 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 12.305 529 1690/711 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.65 12 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 13.076 148 8000/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.75 12 {1, 1, 2} – {1, 2, 1} – {2, 1, 1} 14.378 446 5269/89 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

3.65 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 14.779 954 4411/8 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

0 3.45 11 {0, 0, 0} 4.177 054 924 59/60 S−1 /S
+
1

3.45 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.433 515 987 26/9 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.45 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 10.689 977 0499/500 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

3.45 11 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 11.439 753 2407/10 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

3.45 11 {1, 1, 1} 13.946 438 1126/7 S−8 /S
+
8

3.50 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – 14.696 214 3034/6 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.50 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 15.941 507 1808/14 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1 3.25 11 {0, 0, 0} 4.648 812 704 17/25 S−1 /S
+
1

3.35 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 8.380 342 530 07/13 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.30 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 12.485 556 0509/11 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

3.35 11 {2, 0, 0} 13.156 803 8977/84 S−1 /S
+
1

3.45 11 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{1, 1, 1} – 16.904 036 7034/6 S−8 /S
+
8 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.45 11 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 17.861 796 9003/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.35 11 {1, 1, 2} – {1, 2, 1} – {2, 1, 1} – S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 2, 2} – {2, 0, 2} – {2, 2, 0} – 21.595 037 5740/5 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1 –

{1, 3, 0} – {3, 0, 1} – {0, 3, 1} S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

10 3.12 13 {0, 0, 0} 6.783 741 257 79/81 S−1 /S
+
1

3.14 13 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 12.372 384 1382/4 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.14 13 {0, 0, 2} – {0, 2, 0} 17.135 018 7447/69 S−1 /S
+
1 – S−1 /S

+
1

3.14 13 {2, 0, 0} 19.340 247 7243/93 S−1 /S
+
1

3.00 13 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 19.700 467 4037/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

3.19 13 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 22.955 428 3856/83 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.07 13 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 26.102 785 9695/7 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

3.21 13 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 27.721 566 3968/87 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.85 12 {1, 1, 1} 27.996 375 3308/12 S−8 /S
+
8

Therefore, we tabulate the lower and upper bound eigenvalues of (3.5) in tables (6), (7) and
(8) for c6 values of 10−3, 1 and 103, respectively. Each table includes a set ofβ and γ
parameters, such that

(β, γ ) : {( 1
6,−1), (1,−1), (10,−1), ( 1

6, 0), (0, 0), (1, 0), ( 1
3, 1), (0, 1), (1, 1)} (3.8)

satisfying (3.6) and (3.7). Tables 3–8 also contain the quantum numbers{n1, n2, n3} of the
energy levels and their respective basis sets, the truncation orderN of the wavefunctions
and the critical confinement̀cr, at which the desired accuracy is obtained.
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Table 5. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
c4 = 103, as a function ofα.

α `cr N {n1, n2, n3} En1n2n3 Basis set

− 1
2 1.40 14 {0, 0, 0} 26.954 388 8412/3 S−1 /S

+
1

1.32 13 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 48.622 258 5030/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.36 13 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 65.313 429 3010/43 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.40 14 {0, 0, 2} 72.158 150 8000/15 S−1 /S
+
1

1.42 14 {1, 1, 1} 76.325 687 7301/29 S−8 /S
+
8

1.44 14 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 85.419 545 0627/73 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.39 14 {0, 2, 0} – {2, 0, 0} 85.518 934 5802/20 S−1 /S
+
1 – S−1 /S

+
1

1.47 14 {1, 1, 2} – {1, 2, 1} – {2, 1, 1} 96.389 107 1032/51 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.44 14 {0, 2, 2} 101.767 899 052/116 S−1 /S
+
1

1.28 13 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 101.977 458 650/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

0 1.13 12 {0, 0, 0} 31.919 366 1339/40 S−1 /S
+
1

1.12 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 59.366 410 8819/22 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.12 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 86.813 455 6299/303 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.13 12 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 95.960 981 6227/31 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

1.10 11 {1, 1, 1} 114.260 500 377/9 S−8 /S
+
8

1.12 12 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – 123.408 026 370/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.12 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 137.882 776 355/65 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1 1.10 11 {0, 0, 0} 38.086 833 4593/4 S−1 /S
+
1

1.10 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 71.217 716 6315/7 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.10 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 108.595 258 738/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

1.10 11 {2, 0, 0} 116.603 198 937/8 S−1 /S
+
1

1.10 11 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} – S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4 –

{1, 1, 1} – 149.439 045 580/1 S−8 /S
+
8 –

{2, 0, 1} – {2, 1, 0} – {1, 2, 0} S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.12 12 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 160.514 558 044/7 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.10 11 {1, 1, 2} – {1, 2, 1} – {2, 1, 1} – S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 2, 2} – {2, 0, 2} – {2, 2, 0} – 193.248 820 645/6 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1 –

{1, 3, 0} – {3, 0, 1} – {0, 1, 3} S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

10 0.96 12 {0, 0, 0} 62.444 077 5617/50 S−1 /S
+
1

1.02 14 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 115.453 232 019/21 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.01 14 {0, 0, 2} – {0, 2, 0} 159.492 179 901/31 S−1 /S
+
1 – S−1 /S

+
1

1.01 14 {2, 0, 0} 182.424 212 632/701 S−1 /S
+
1

0.93 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 187.200 352 824/36 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.03 14 {0, 2, 1} – {0, 1, 2} – {1, 0, 2} 214.929 362 459/535 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.02 14 {2, 0, 1} – {2, 1, 0} – {1, 2, 0} 248.733 089 900/4 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.03 14 {0, 0, 3} – {0, 3, 0} – {3, 0, 0} 265.057 585 588/668 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

0.90 12 {1, 1, 1} 268.739 781 544/52 S−8 /S
+
8

4. Discussion

In this paper, an extensive numerical analysis of three-dimensional anharmonic oscillators is
presented via the confined system which generates converging eigenvalue bounds. Tables 1
and 2 exhibit evidently the typical aspects of the method. First, the method can be applied
equally well to the quartic and sextic oscillators. Second, the accuracy of the results
can be improved by increasing appropriately the boundary parameter`. Furthermore, it
is deduced from tables 3–8 that there is no accuracy loss in a very wide range of the
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Table 6. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where
c6 = 10−3, as a function ofβ andγ .

γ β `cr N {n1, n2, n3} En1n2n3 Basis set

−1 1
6 5.50 11 {0, 0, 0} 3.005 910 711 55/6 S−1 /S

+
1

5.50 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.017 549 679 05/6 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.029 143 013 81/3 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} 7.051 584 425 35/8 S−1 /S
+
1

1 5.25 10 {0, 0, 0} 3.011 350 229 49/50 S−1 /S
+
1

5.50 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.033 558 556 88/9 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.069 304 041 10/1 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} – {0, 2, 0} 7.077 436 038 17/20 S−1 /S
+
1 – S−1 /S

+
1

10 5.00 10 {0, 0, 0} 3.063 696 942 56/7 S−1 /S
+
1

5.25 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.178 879 727 96/7 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.25 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.409 006 072 14/5 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.25 11 {0, 0, 2} – {0, 2, 0} 7.304 657 341 01/7 S−1 /S
+
1 – S−1 /S

+
1

0 − 1
6 5.25 10 {0, 0, 0} 3.004 440 819 29/30 S−1 /S

+
1

5.50 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.013 191 576 00/1 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.019 056 729 05/6 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} 7.038 763 575 82/6 S−1 /S
+
1

0 5.25 10 {0, 0, 0} 3.005 546 446 71/2 S−1 /S
+
1

5.25 10 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.016 478 591 81/6 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.027 410 736 95/6 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 7.048 497 556 91/5 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

1 5.25 10 {0, 0, 0} 3.012 067 327 00/1 S−1 /S
+
1

5.25 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.035 655 952 21/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.075 424 338 37/8 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} – {0, 2, 0} 7.079 454 939 54/6 S−1 /S
+
1 – S−1 /S

+
1

1 − 1
3 5.25 10 {0, 0, 0} 3.004 073 434 18/9 S−1 /S

+
1

5.50 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.012 104 761 21/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.017 267 137 97/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} 7.035 591 531 67/71 S−1 /S
+
1

0 5.25 10 {0, 0, 0} 3.006 282 320 43/5 S−1 /S
+
1

5.50 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.018 666 315 27/8 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.50 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.033 906 257 68/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

5.50 11 {0, 0, 2} – {0, 2, 0} 7.050 636 386 05/8 S−1 /S
+
1 – S−1 /S

+
1

1 5.25 10 {0, 0, 0} 3.012 780 960 68/70 S−1 /S
+
1

5.25 10 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.037 735 793 50/3 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

5.25 10 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 7.081 459 967 43/7 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

5.50 11 {2, 0, 0} 7.110 092 855 85/7 S−1 /S
+
1

anharmonicity constants. In fact, a significant property of this class of eigenvalue problems
is the existence of two distinct regimes of values of the coupling constants and the quantum
numbers. The two regimes are referred to as the nearly harmonic and the nearly pure
anharmonic, respectively, for the small and large values of the eigenvalue parameters. It
is well known that most of the numerical techniques are efficiently used in one of these
regimes. Therefore, the confined system approach makes our method more versatile and
applicable with uniform precision to almost any type of Schrödinger potential. We believe
that the spectrum of a perturbed three-dimensional Hamiltonian in the present generality is
computed for the first time.
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Table 7. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where
c6 = 1, as a function ofβ andγ .

γ β `cr N {n1, n2, n3} En1n2n3 Basis set

−1 1
6 2.65 12 {0,0,0} 4.34348616268/77 S−1 /S

+
1

2.65 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.963 709 078 44/73 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.65 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 11.483 804 2150/7 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.65 12 {0, 0, 2} 12.825 266 6016/34 S−1 /S
+
1

1 2.65 10 {0, 0, 0} 4.919 667 855 01/2 S−1 /S
+
1

2.65 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 9.218 991 650 08/13 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.65 11 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 14.049 874 035 2/3 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.65 11 {0, 0, 2} – {0, 2, 0} 14.416 607 1509/13 S−1 /S
+
1 – S−1 /S

+
1

10 2.45 12 {0, 0, 0} 7.060 561 585 02/6 S−1 /S
+
1

2.45 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 13.465 529 8282/5 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.45 12 {0, 0, 2} – {0, 2, 0} 19.782 277 3035/59 S−1 /S
+
1 – S−1 /S

+
1

2.38 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 21.803 623 6197/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

0 − 1
6 2.70 12 {0, 0, 0} 4.116 458 109 02/21 S−1 /S

+
1

2.77 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.447 129 679 96/9 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.77 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 10.509 404 8479/93 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.77 12 {0, 0, 2} 11.680 031 8516/46 S−1 /S
+
1

0 2.65 12 {0, 0, 0} 4.306 873 856 95/708 S−1 /S
+
1

2.65 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.904 645 175 51/95 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.65 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 1.502 416 4940/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.65 12 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 12.837 871 2370/90 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

1 2.61 12 {0, 0, 0} 4.978 778 995 16/22 S−1 /S
+
1

2.63 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 9.343 189 699 39/49 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.61 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 14.333 715 2290/2 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.61 12 {0, 0, 2} – {0, 2, 0} 14.502 895 9025/41 S−1 /S
+
1 – S−1 /S

+
1

1 − 1
3 2.82 12 {0, 0, 0} 4.062 464 558 41/93 S−1 /S

+
1

2.89 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.342 831 040 38/75 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.94 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 10.436 511 4346/55 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.91 12 {0, 0, 2} 11.566 697 0923/59 S−1 /S
+
1

0 2.63 12 {0, 0, 0} 4.417 241 165 94/613 S−1 /S
+
1

2.63 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 8.161 819 733 17/86 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.63 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 12.100 307 6520/30 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

2.63 12 {0, 0, 2} – {0, 2, 0} 13.016 318 2262/97 S−1 /S
+
1 – S−1 /S

+
1

1 2.62 12 {0, 0, 0} 5.033 395 937 70/4 S−1 /S
+
1

2.62 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 9.455 535 276 77/91 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

2.62 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 14.584 132 9457/8 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

2.62 12 {2, 0, 0} 15.989 440 7874/84 S−1 /S
+
1

The crucial point of our approximation lies in the determination of a critical confinement
size denoted bỳ cr, to achieve satisfactory results. We infer that this depends mainly on
the dominant terms of the potential function and the quantum numbers of the state being
considered. It is noteworthy that the required`cr values can be estimated roughly after
a few computer experiments. As a matter of fact, it is unnecessary to find these values
very precisely since the accuracy of the results is virtually the same in the near vicinity
of a specific confinement. Obviously, because both lower and upper bounds are calculated
simultaneously for a predicted̀cr, there is no uncertainty in the tabulated eigenvalues.
Hence, the numerical evaluations support completely the theoretical analysis in the appendix.
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Table 8. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where
c6 = 103, as a function ofβ andγ .

γ β `cr N {n1, n2, n3} En1n2n3 Basis set

−1 1
6 1.13 12 {0, 0, 0} 19.713 219 4856/62 S−1 /S

+
1

1.14 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 37.806 450 8817/22 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.14 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 55.066 790 5505/47 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.15 13 {0, 0, 2} 63.491 336 8818/84 S−1 /S
+
1

1 1.10 12 {0, 0, 0} 23.769 236 2930/6 S−1 /S
+
1

1.12 11 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 46.277 484 0394/415 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.10 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 71.995 675 5242/9 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.11 12 {0, 0, 2} – {0, 2, 0} 74.282 190 3355/414 S−1 /S
+
1 – S−1 /S

+
1

10 1.03 12 {0, 0, 0} 37.148 422 8147/55 S−1 /S
+
1

1.03 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 72.048 647 7728/76 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.03 12 {0, 0, 2} – {0, 2, 0} 106.329 189 226/74 S−1 /S
+
1 – S−1 /S

+
1

1.01 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 118.291 434 651/2 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

0 − 1
6 1.17 12 {0, 0, 0} 17.954 909 8211/25 S−1 /S

+
1

1.19 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 33.995 911 8980/99 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.21 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 48.172 283 4377/406 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.22 13 {0, 0, 2} 55.381 509 3761/998 S−1 /S
+
1

0 1.15 12 {0, 0, 0} 19.477 050 3970/3 S−1 /S
+
1

1.15 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 37.510 016 3517/20 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.15 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 55.542 982 3064/7 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.15 12 {0, 0, 2} – {0, 2, 0} – {2, 0, 0} 64.167 180 3713/74 S−1 /S
+
1 – S−1 /S

+
1 – S−1 /S

+
1

1 1.12 12 {0, 0, 0} 24.164 292 6621/3 S−1 /S
+
1

1.12 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 47.073 279 1739/43 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.12 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 73.770 465 8095/6 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.12 12 {0, 0, 2} – {0, 2, 0} 74.817 379 7500/22 S−1 /S
+
1 – S−1 /S

+
1

1 − 1
3 1.27 13 {0, 0, 0} 17.557 464 6788/99 S−1 /S

+
1

1.27 13 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 33.342 328 3679/847 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.30 13 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 48.039 135 2733/837 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.31 13 {0, 0, 2} 55.229 896 8870/964 S−1 /S
+
1

0 1.15 12 {0, 0, 0} 20.306 232 9130/2 S−1 /S
+
1

1.15 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 39.346 102 7851/2 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.14 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} 59.615 936 5807/14 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7

1.15 12 {0, 0, 2} – {0, 2, 0} 65.380 914 7609/59 S−1 /S
+
1 – S−1 /S

+
1

1 1.12 12 {0, 0, 0} 24.525 316 0869/70 S−1 /S
+
1

1.12 12 {0, 0, 1} – {0, 1, 0} – {1, 0, 0} 47.785 019 8802/6 S−2 /S
+
2 – S−3 /S

+
3 – S−4 /S

+
4

1.12 12 {1, 1, 0} – {1, 0, 1} – {0, 1, 1} – 75.318 478 6376/7 S−5 /S
+
5 – S−6 /S

+
6 – S−7 /S

+
7 –

{0, 0, 2} – {0, 2, 0} S−1 /S
+
1 – S−1 /S

+
1

1.12 12 {2, 0, 0} 84.175 583 7757/75 S−1 /S
+
1

It is shown from (2.23) that a truncated wavefunction of orderN leads to a matrix
eigenvalue problem of orderN3. Since the diagonalization of a large matrix is highly
time consuming, we content ourselves with a truncation size of about 12 to 13, which
yields approximately 12 significant figures accuracy. Certainly, more accurate results can
be obtained at the cost of greater computation times. Another remark is that the convergence
rates of the Dirichlet and Neumann basis sets in (2.6) and (2.7) are almost equivalent.

For α = 1 andβ = γ = 1, we have the isotropic quartic and the sextic oscillators,
respectively. Therefore, the Schrödinger equation (1.1) can be treated in spherical polar
coordinates by the separation of variables proposing a solution of the type9(r, θ, φ) =
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R(r)Pml (θ) eimφ . Here,Pml (θ) with l > |m| are the associated Legendre functions, and
R(r) satisfies the radial Schrödinger equation{

r2 d2

dr2
+ 2r

d

dr
+ r2[E − V (r)] − l(l + 1)

}
R(r) = 0. (4.1)

In this representation, each energy level is independent of the magnetic quantum numberm,
m = 0,±1,±2, . . . ,±l, and thus(2l + 1)-fold degenerate. The spectrum then contains
non-degenerate eigenvalues corresponding tol = 0, threefold degenerate eigenvalues
corresponding tol = 1 and so on. This structure in the spherically symmetric cases can be
seen clearly from our tables. However, the computation of the spectrum directly from (4.1)
is an ongoing study. In fact, separate and particular research into the radial Schrödinger
equation along this line seems to be quite interesting since it bears a different mathematical
character.

Another special situation occurs whenα = 0 andβ = γ = 0 for the quartic and sextic
perturbations in (3.3) and (3.5), respectively. In these cases the problem reduces to three
independent quartic or sextic anharmonic oscillators. As a result, the energy levels are
expressible as

En1n2n3 = En1 + En2 + En3 (4.2)

whereEni (i = 1, 2, 3) denote the eigenvalues of the relevant problem in one dimension.
Equation (4.2) implies that the different permutations of a fixed set of quantum numbers
{n1, n2, n3} indicate the same energy, a property which clarifies the degeneracies of the
spectrum of the system. Hence the eigenvalues are either single ifn1 = n2 = n3 or threefold
degenerate ifni = nj 6= nk (i, j, k = 1, 2, 3) or sixfold degenerate ifn1 6= n2 6= n3.

Apart from the particular forms of the potentials, we observe that the mixed parity
states are threefold degenerate throughout. These energy levels with two even plus one
odd and with one even plus two odd quantum numbers are determined by the setsS+2 (S

−
2 ),

S+3 (S
−
3 ), S

+
4 (S

−
4 ) and S+5 (S

−
5 ), S

+
6 (S

−
6 ), S

+
7 (S

−
7 ), respectively. The eigenvalues with the

same parity yielded by the setsS+1 (S
−
1 ) andS+8 (S

−
8 ) are either single or doubly degenerate

in a three-dimensional system. This can easily be attributed to the interchange symmetries
of the potential functions considered numerically in this work.

On the other hand, in the case whereα = 0 and, therefore, (3.3) reduces to three
independent quartic oscillators, additional checks on the reliability and consistency of our
two-sided bounds are provided by making use of the numerical results of one dimension.
Indeed, very accurate eigenvalues are numerically known forV (x) = x2 + c4x

4 [2, 5], the
first three of which, performed in [2] by Banerjee, are listed in table 9. The energy levels
determined by the relation (4.2) are then compared in table 10 with the current eigenvalue
bounds estimated by the three-dimensional treatment of the problem. Fortunately, the results
are in excellent agreement for all states and anharmonicity constants. Moreover, the one-
dimensional sextic oscillator Hamiltonian(

− d2

dx2
+ v2x

2+ v4x
4+ v6x

6

)
9 = E9 lim

x→±∞9(x) = 0 (4.3)

is an example of quasi-exactly solvable system provided that suitable algebraic relations
between the coupling constants hold. For instance, the ground-state eigenfunction is

90(x) = e−
1
4Ax

4− 1
2Bx

2

A = √v6 > 0 B = 1
2v4v

−1/2
6 (4.4)

with the corresponding energy

E0 = B (4.5)
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Table 9. The numerically exact eigenvalues of the one-dimensional quartic oscillatorV (x) =
x2 + c4x

4, as a function ofc4. Data are taken from [2].

c4 E0 E1 E2

10−3 1.000 748 692 673 3.003 739 748 168 5.009 711 872 788
1 1.392 351 641 530 4.648 812 704 212 8.655 049 957 759

103 10.639 788 711 33 38.086 833 459 38 74.681 404 200 16

Table 10. The comparison of the current eigenvalue bounds for the potentialV (x, y, z) =
x2+ y2+ z2+ c4(x

4+ y4+ z4) representing three independent quartic oscillators, with results
of the one-dimensional case. The results forEn1 + En2 + En3 with n1, n2, n3 = 0, 1, 2 are
calculated from table 9, while those forE−n1n2n3

andE+n1n2n3
stand for the lower and upper

bounds, respectively, in our tables 3, 4 and 5, whereα = 0.

c4 {n1, n2, n3} En1 + En2 + En3 E−n1n2n3
/E+n1n2n3

10−3 {0, 0, 0} 3.002 246 078 019 3.002 246 078 01/3
{0, 0, 1} – {0, 1, 0} – {1, 0, 0} 5.005 237 133 514 5.005 237 133 51/2
{1, 1, 0} – {1, 0, 1} – {0, 1, 1} 7.008 228 189 009 7.008 228 189 00/2
{0, 0, 2} – {0, 2, 0} – {2, 0, 0} 7.011 209 258 134 7.011 209 258 11/6
{1, 1, 1} 9.011 219 244 504 9.011 219 244 49/53

1 {0, 0, 0} 4.177 054 924 590 4.177 054 924 59/60
{0, 0, 1} – {0, 1, 0} – {1, 0, 0} 7.433 515 987 272 7.433 515 987 26/9
{1, 1, 0} – {1, 0, 1} – {0, 1, 1} 10.689 977 049 95 10.689 977 0499/500
{0, 0, 2} – {0, 2, 0} – {2, 0, 0} 11.439 753 240 82 11.439 753 2407/10
{1, 1, 1} 13.946 438 112 64 13.946 438 1126/7

103 {0, 0, 0} 31.919 366 133 98 31.919 366 1339/40
{0, 0, 1} – {0, 1, 0} – {1, 0, 0} 59.366 410 882 04 59.366 410 8819/22
{1, 1, 0} – {1, 0, 1} – {0, 1, 1} 86.813 455 630 09 86.813 455 6299/303
{0, 0, 2} – {0, 2, 0} – {2, 0, 0} 95.960 981 622 82 95.960 981 6227/31
{1, 1, 1} 114.260 500 3781 114.260 500 377/9

for the special values ofv2, v2 = B2 − 3A, as may be verified directly. In particular, for
v6 = 1 andv4 = 4 we see thatv2 must be taken as 1 and thatE0 = 2. Thus the relation
(4.2) now suggests that the lowest eigenvalue of the potential

V (x, y, z) = x2+ y2+ z2+ 4(x4+ y4+ z4)+ x6+ y6+ z6 (4.6)

representing three independent sextic oscillators, can be found analytically such that
E0,0,0 = 6. Table 11 demonstrates the rate of convergence of the lower and upper bounds in
this case, as a function of`, which clarifies once more the accuracy of the present method.

In the second special case of the spherically symmetrical potentials for which
am−l,l−k,k = 1 for all m, l, k in (1.2), the substitution ofr2 = x2 + y2 + z2 transforms
V (x, y, z) into a functionV (r) of a single variable, i.e.

V (r) =
M∑
m=1

v2mr
2m (4.7)

and, hence, the eigenvalues of the original equation can be examined by the radial
Schr̈odinger equation in (4.1). As we pointed out earlier, potentials (3.3) and (3.5) are
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Table 11. Convergence rates of eigenvalue bounds as a function of`, for the ground-state
energy of the sextic oscillator in (4.6), which is determined analytically, i.e.E0,0,0 = 6, in the
unbounded domain.

` N E−0,0,0(`) E+0,0,0(`)

1.00 5 3.3 8.4
1.50 5 5.933 6.051
1.75 5 5.9980 6.0017
2.00 7 5.999 986 6.000 014
2.25 9 5.999 999 982 6.000 000 018
2.30 10 5.999 999 996 6.000 000 004
2.35 11 5.999 999 9993 6.000 000 0007
2.40 11 5.999 999 999 88 6.000 000 000 12
2.45 12 5.999 999 999 982 6.000 000 000 018
2.50 13 5.999 999 999 9974 6.000 000 000 0025

examples of this case whenα = 1 andβ = γ = 1, respectively. It can be deduced that
our bounds in tables 3–5 withα = 1 are very good and consistent with the results of the
isotropic quartic oscillator already available in the literature [20–22]. Note that the notation
of the authors of [20, 21] differ from that of the present paper so that their anharmonicity
constants and eigenvalues should either be divided or multiplied by 2, orvice versa. We
have not introduced, however, any numerical table for a particular comparison in order not
to overfill the content of the paper with tabular material. Moreover, the eigensolutions of the
sextic oscillatorsV (r) = v2r

2+v4r
4+v6r

6 can be derived analytically for special values of
the parameters, similar to those of the one-dimensional case. The confidence in the accuracy
of our two-sided bounds has also been reconfirmed by utilizing exact results so determined.

In conclusion, the accurate results presented in the tables provide a rich information
about the spectral properties, which may be regarded as a guide to future numerical
methods to be developed for solving three-dimensional eigenvalue problems of this kind.
It is worth noting that the applicability of our method is not limited by the examples
which are numerically studied here. In contrast, the algorithm is sufficiently general in
its structure to incorporate any physical, more interesting, potentials having convergent
power series expansions about the origin. This follows from the fact that such potentials
can approximately be characterized by the arbitrary polynomial in (1.2), for which the
method is established. Note also that we are interested only in the energetic structure of
the Schr̈odinger Hamiltonians calculating the spectral points. The eigenfunctions may be
examined as well to shed some light on the global behaviour of the system. For instance, we
have perceived, from table 1, that the rate of convergence of the successive approximations,
asN and` increase, is relatively slow for the eigenvalues of the potential (1.3), which is
perhaps an example of a chaotic system. Now that we are encouraged by the success of
the confined system approximation, more interesting problems such as chaotic Hamiltonians
will be investigated in the near future.
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Appendix. Variation of eigenvalues with respect to the confinement parameter in the
Dirichlet and Neumann problems

It is obvious that the eigensolutions of the enclosed Schrödinger equation (1.1), in which
R3 is replaced by�, depend on the boundary parameter`. Therefore, any normalized
eigenfunction and the corresponding eigenvalue may be denoted by

9 = 9(x, y, z; `) (A.1)

and

E = E(`) (A.2)

respectively. Now, we present a theoretical analysis on the behaviour ofE(`) when the
wavefunction satisfies the Dirichlet and Neumann boundary conditions. Rewriting equation
(1.1) in the form

L9 = 0 L = −∇2+ V (x, y, z)− E(`) (A.3)

on differentiating both sides with respect to`, we obtain

9
dE

d`
= L9`. (A.4)

If we multiply (A.4) by 9 and integrate over the three-dimensional space�, it follows
immediately that

dE

d`
= 〈L9`,9〉 (A.5)

where ket and bra notation stands for the inner product. Introducing the formal adjoint of
the operatorL, we then find that

dE

d`
= surface integral terms+ 〈9`,L?9〉 (A.6)

in which the inner product on the right-hand side vanishes from (A.3) sinceL is formally
self-adjoint withL? = L. Thus we have

dE

d`
=
∫ `

−`

∫ `

−`
(9x9` −99x`)|`x=−` dy dz+

∫ `

−`

∫ `

−`
(9y9` −99y`)|`y=−` dx dz

+
∫ `

−`

∫ `

−`
(9z9` −99z`)|`z=−` dx dy (A.7)

which may be simplified by using the boundary conditions.
In order to understand the meaning of partial derivatives with respect to`, let us first

consider the total differential of9(x, y, z; `),
d9 = 9x dx +9y dy +9z dz+9` d`. (A.8)

Nevertheless if, for instance,x is a function of`, x = f (`), then dx = (df/d`) d` and
hence

d9 = 9y dy +9z dz+
(
9` + df

d`
9x

)
d` (A.9)

implying the operational equivalence

9` = 9` + df

d`
9x. (A.10)
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Here,9` on the left-hand side should be regarded as the partial derivative of the function
9[f (`), y, z; `] of `, y andz only. So

9` = 9` ∓9x (A.11)

whenx = f (`) = ∓`. Likewise, we see that

9` = 9` ∓9y and 9` = 9` ∓9z (A.12)

when y = ∓` and z = ∓`, respectively. In accordance with (A.11) and (A.12), the
partial differentiation with respect tòof the Dirichlet conditions in (1.7) and the Neumann
conditions in (1.8) lead to the equations

9`(∓`, y, z)∓9x(∓`, y, z) = 0

9`(x,∓`, z)∓9y(x,∓`, z) = 0 (A.13)

9`(x, y,∓`)∓9z(x, y,∓`) = 0

and

9x`(∓`, y, z)∓9xx(∓`, y, z) = 0

9y`(x,∓`, z)∓9yy(x,∓`, z) = 0 (A.14)

9z`(x, y,∓`)∓9zz(x, y,∓`) = 0

respectively. Therefore, in the case of the Dirichlet problem, substitution of9` from (A.14)
into (A.7) gives

dE+

d`
= −

∫ `

−`

∫ `

−`
[92

x (`, y, z)+92
x (−`, y, z)] dy dz

−
∫ `

−`

∫ `

−`
[92

y (x, `, z)+92
y (x,−`, z)] dx dz

−
∫ `

−`

∫ `

−`
[92

z (x, y, `)+92
z (x, y,−`)] dx dy (A.15)

from which (1.9) is obtained by exploiting the reflection symmetries of the wavefunction.
In any case, however, we have shown that

dE+

d`
< 0 (A.16)

which completes the proof on the decreasing behaviour ofE+(`).
If we use the Neumann conditions (1.8) and the relations in (A.15), equation (A.7) takes

the form

dE−

d`
=
∫ `

−`

∫ `

−`
[9(`, y, z)9xx(`, y, z)+9(−`, y, z)9xx(−`, y, z)] dy dz

+
∫ `

−`

∫ `

−`
[9(x, `, z)9yy(x, `, z)+9(x,−`, z)9yy(x,−`, z)] dx dz

+
∫ `

−`

∫ `

−`
[9(x, y, `)9zz(x, y, `)+9(x, y,−`)9zz(x, y,−`)] dx dy. (A.17)

Furthermore, examining the first integral

I1 =
∫ `

−`

∫ `

−`
9(`, y, z)9xx(`, y, z)dy dz (A.18)
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in (A.17) we may derive a more useful expression for dE−/d`. Indeed, from (A.3),I1 can
be put in the form

I1 =
∫ `

−`

∫ `

−`
[V (`, y, z)− E−]92(`, y, z)dy dz

−
∫ `

−`

∫ `

−`
9(`, y, z)[9yy(`, y, z)+9zz(`, y, z)] dy dz (A.19)

for which the last term is integrated by parts to obtain

I1 =
∫ `

−`

∫ `

−`

{
[V (`, y, z)− E−]92(`, y, z)+92

y (`, y, z)+92
z (`, y, z)

}
dy dz. (A.20)

Other integrals are evaluated by repeating the same process, and, therefore, equation (A.17)
becomes

dE−

d`
=
∫ `

−`

∫ `

−`
{[V (`, y, z)− E−]92(`, y, z)+92

y (`, y, z)+92
z (`, y, z)

+[V (−`, y, z)− E−]92(−`, y, z)+92
y (−`, y, z)+92

z (−`, y, z)} dy dz

+
∫ `

−`

∫ `

−`
{[V (x, `, z)− E−]92(x, `, z)+92

x (x, `, z)+92
z (x, `, z)

+[V (x,−`, z)− E−]92(x,−`, z)+92
x (x,−`, z)+92

z (x,−`, z)} dx dz

+
∫ `

−`

∫ `

−`
{[V (x, y, `)− E−]92(x, y, `)+92

x (x, y, `)+92
y (x, y, `)

+[V (x, y,−`)− E−]92(x, y,−`)+92
x (x, y,−`)+92

y (x, y,−`)} dx dy.

(A.21)

Under the assumption that the wavefunction possesses the reflection symmetries, this
equation reduces to the form of (1.10). Consequently,

dE−

d`
> 0 (A.22)

subject to the sufficient condition that|`| is beyond the classical turning points.
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