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Abstract. The Hilbert spaceL»(R%), to which the wavefunction of the three-dimensional
Schibdinger equation belongs, has been replacedLp§2), where 2 is a bounded region.

The energy spectrum of the usual unbounded system is then determined by showing that the
Dirichlet and Neumann problems ih,($2) generate upper and lower bounds, respectively, to
the eigenvalues required. Highly accurate numerical results for the quartic and sextic oscillators
are presented for a wide range of the coupling constants.

1. Introduction

The determination of the spectra of one-dimensional quantum oscillators is 30-year old
science with many reliable methods developed to cope with the associated computational
problem [1-6]. In spite of the existence of several moment-based asymptotic [3, 7] and
perturbative [8—12] eigenenergy estimation techniques in two dimensions, however, the
problem is still interesting from both numerical and theoretical viewpoints. In fact, a
perturbation series expansion over the classical harmonic oscillator solution is divergent-
asymptotic, which was verified explicity by Bender and Wu [13] in their important
investigation into the quartic oscillator. Therefore, the methods starting with the use of
a harmonic-like reference function usually show weak convergence properties, especially
for strong anharmonic couplings [10, 12].

On the other hand, studies on the three-dimensional perturbed oscillators are rather
limited, and few reported results are available in the literature [14]. Because most of the
methods lead to the evaluation of multiple-infinite series or recursions, the solution of the
wave equation in higher-dimensional spaces is quite complicated. Fortunately, the difficulty
has been lessened considerably by the advent of powerful computers.

In the preceding articles, Tals and co-workers [15-19] have focused on truncating the
infinite domain of the Sclidinger equation and modifying asymptotic conditions at infinity.

In one and two dimensions, it was shown that the Dirichlet and Neumann problems yield

an excellent accuracy through converging upper and lower bounds to the energy levels
of the corresponding unbounded system. Thus the present paper deals mainly with a
straightforward generalization and extension of these earlier works to the more challenging
three-dimensional eigenvalue problems.

We consider the appropriately scaled Sxhinger equation in the form

[—V2+ V(x, 5, 0]¥(x,y,2) = E¥(x, y,2) W e L(R?) (1.1)

1 Present address: Department of Mathematj@k@ya University, 06530 Ankara, Turkey.
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with a general polynomial potential of degrée

M

m 1
m l
Vix,y,2) = E V2 E (l) E (k>Cl;n—z,z-k,kxz(m_[)yz(l_k)ZZk voy >0 (1.2)
=0

m=1 k=0

in x2, y2 and z?, wherev,,, anda,,_;;_« are the coupling constants. The doma&i# is
truncated to a bounded domain, which is defined as a cubic box of sidesit® length,

Q={(x,y,2):—£<x,y,z2< ¢} (1.3)

preserving the symmetry of the original unbounded domain about the origin. Therefore, the
potential in (1.2) has clearly the reflection symmetries

Vix,y,z) = V(xx, £y, £2) (1.4)
and, furthermore, interchange symmetries of three coordinates
Vix,y,2) =V(x,z,0) =V, x,2) =V(y,z,x) = V(z,x,y) = V(z, y, %) (1.5)
provided that
Am—1l—kk = Am—1.k,l-k = Al—k,m—1,k = Al—k,k,m—1 = Ake.m—1,1—k = Qk,1—k,m—I (1-6)

form=12...,M,l=0,1,...,m, andk = 0,1,...,/. Note that the wavefunction
W (x, y, z) will then satisfy the same symmetries as well.
As indicated, we assume the Dirichlet

W(+l, y,2) = WU(x,+0,2) = WU(x,y, £0) =0 (1.7)
and Neumann conditions
W (£, y,2) =W, (x,£0,2) =V, (x,y,£0) =0 (1.8)

over the surfaces of the box. Now the eigenvalues of (1.1imay be regarded as a
function of the confinement parameterSo if they are denoted b (¢) in the case of the
Dirichlet conditions, then it can be shown, in analogy with the one- and two-dimensional
problems [17, 18], that

dE+ 4 l 4 4
S =2 | verove-2f [ wveeoda
d¢ N ) —eJe

¢ pe
—2/ / \Ilzz(x, v, £) dx dy (1.9
—tJ—t

and that &t /d¢ is definitely negative (see the appendix). Thus the eigeneneHi¢s)
of the Dirichlet problem decrease monotonicallyfagcreases providing upper bounds to
those of the unbounded system, whére> co.

In a similar fashion, the eigenvalues; (¢) say, of the Neumann problem lead to the
relation
dE~ ot
T 2[{ /[{[V(ﬁ, y.2) — ETJWP(L, y, 2) + W2(L, y. 2) + W2(L, y. 2)} dy dz

14 ¢
+2/ / {[V(x,€,2) — ETJW2(x, £, 2) + W2(x, £, 2) + W2(x, £, 2)} dx dz
—J—L

4 4
+2/ /{[voc,y,@—E—]\Iﬂ(x,y,@+w§<x,y,£)+w3(x,y,6>}dxdy

N )
(1.10)
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which remains strictly positive, if¢| is beyond the classical turning points (see the
appendix). It should be noted that this restriction on the confinement parafmeterot
necessary but sufficient to mak&d/d¢ always positive. Therefore, the eigenvalues of the
Neumann problem is an increasing functionfofielding lower bounds to the asymptotic
eigenvalues.

In the appendix, an explicit proof on the decreasing and increasing behavidig pf
stated by (1.9) and (1.10) is presented. As an important consequence, the Dirichlet and
Neumann boundary value problems generate error bounds to the energy levels of the usual
system orR3, in the sense that

E~(¢) < E < ET(0). (1.11)

Hence, in section 2 we establish a variational method by means of simple trigonometric
basis functions to determinE* as well asE~ for an arbitrary polynomial in (1.2). In
section 3, the procedure is applied to particular problems including the quartic and sextic
oscillators. The last section concludes the paper with a discussion of the results.

2. Variational formulation with simple trigonometric bases
By introducing the coordinate transformations,

T T T
&= 7" =Yy = 7Z (2.1)

the Schédinger equation in (1.1) becomes

b4
[=V2+ 02V (&, v vOIWE, 0, ©) = VEOWE N v=— (22)
with the scaled domaig,

If we first consider the wave equation for the motion of a free particle

VALV R
— b 4+ —— 4 AV, n,0) =0 2.4
a§2+an2+a§2+ &, 1m,8) (2.4)
where the potential has been taken as

0 insideQ2

Ve mo= 00 outsideQ (2:5)

it is an easy matter to obtain exact analytical eigensolutions. Thus the normalized sequences
of functions

¢ijk(E, 0, 0) = ¥?codi + 3)& cosj + 3)n cosk + 3)¢ (2.68)
Gijk(E, 0. ¢) =¥ cosli + 3)& cosj + 3)n sin(k + 1)¢ (2.60)
GijiE.n, ¢) = ¥ codi + 3)E sin(j + Dn cosk + 3)¢ (2.6c)
Gijk(E,n, 0) =~ ¥2sinG + 1)& cos(j + 3)n costk + 3)¢ (2.6d)
Gijr(&.m, &) =~ ¥2sin(i + DE sin(j + 1n cosk + 3)¢ (2.69)
Gijk(€, 0, 0) = m~¥?sin(i + D& cos(j + 3)n sin(k + 1)¢ (2.6)

¢ije (€, 1, ¢) =~ ¥2codi + 2)& sin(j + Dy sink + 1)¢ (2.69)
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and
dijn(E,n, &) = 7 32sin(i + D& sin(j + Dy sin(k + 1)¢ (2.6)
satisfy (2.4) and the Dirichlet boundary conditions wheralues are properly chosen for
alli, j,k=0,1,.... Furthermore, the functions
@iin(E,m, &) = Nijx w2 cosi& cosjn cosks (2.72)
ijk(&, 0, 8) = V2N jom %2 cosi& cosjn sin(k + )¢ (2.70)
@ijk (&, m, ) = V2N; 0 m~¥? cosig sin(j + 3)n cosk¢ (2.70)
Qi€ 0. 8) = V2No w3 sin(i + 3)& cosjn coske (2.7d)
@ij(E. . ) = 2Noox Y2 sini + 3)& sin(j + 3)n cosk¢ (2.7¢)
9ijk(E. 0, ¢) = 2No jom 2% sin(i + 3)& cosjn sin(k + 3)¢ (2.7)
ik (E.n, ¢) = 2N 002 cosi§ sin(j + )1 sintk + 3)¢ (2.79)
and
@ik (€, n, &) =~ ¥2 sinG + $)& sin(j + 3)n sintk + 3)¢ (2.m)

are solutions of (2.4) with Neumann conditions, whe¥g, is a normalization constant
defined by

Nijp = [A+ 8001+ 8,001+ 80)] 2 (2.8)

in which §;; stands for the Kronecker delta. The 16 sets of functions in (2.6) and (2.7)
comprise complete orthonormal bases for the Hilbert sgac&) which, henceforth, are
referred to asSy, S;, S}, S;, S&, S¢, ST, S§ andST, S5, S5, Sy, S5, Sg. S7, Sg,
respectively.

On the other hand, since the wavefunction of the full dimger equation (2.2) belongs
to the same space spanned by #hg or ¢;;x, we can propose the solutions

tEn. =) hijk $iji(E. . 0) (2.9)
i=0 j=0 k=0
and
OEND =Y DY fik pijk&E 1, 0) (2.10)
i=0 j=0 k=0

for the Dirichlet and Neumann problems, respectively, whgpeand f;;; are the expansion
coefficients. The energy levels of a three-dimensional oscillator being considered are
characterized by three quantum numbefsn, andngs, i.e. E = E, ,,,,- The spectrum
can be decomposed into eight subsets owing to the reflection symmetries of the potential in
(1.2). It is worth mentioning that the structures of the present bases give the possibility of
taking care of these subsets individually in a natural way. In fact, theSge(S;) andSg
(Sg) can be used in the expansions (2.9) or (2.10) to determine the discrete states with the
same parity, namely, three even or three odd. However, the eigenvalues with mixed parity,
two even and one odd or one even and two odd, should be investigated by means of the
others.

Hence the substitution of (2.9) into (2.2) reduces the &dinger equation to the secular
equations

[e.¢] o0 o0
D0 Hijmn = VVET (088 jmalhumn = O (2.12)

=0 m=0n=0
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fori, j,k=0,1,..., with
T T T
Hoimn = [ [ [ G574 2V 06, om0} (2.12)
The entriesH;ju, are nicely written in a compact form

1
Hijrinn = 7 [(2 + 14 p)®+ 2j + 1+ p2)® + (2k + 1+ p3)®] 8:18jmSkn

M I J
I J -7 -7
ey (1) 2 (oot 4 mi
=1 J=0 K=0
(J=K) (J=K) (K) (K)
X [ijm + SZRj+m+1+pz][Rk—n + S3Rk+n+l+p3] (2.13)

where R\’ denote the simple integrals of the type
. 1 T X
RY = —f 0% cosk6 do. (2.14)
T Jo

In this definition of H;x.,» We have introduced the integer parametgrsy, ss, p1, p> and
p3 to include every basis in (2.6), such that

s1=s=s3=1 p1=p2=p3=0 (2.1%)
s1=s52=1 s3=-1 pr=p2=0 p3=1 (2.1%)
s1=1 so=-1 s3=1 p1=0 p,=1 p3=0 (2.1%)
s1=1 ss=s53=-1 p1=0 po=p3=1 (2.19)
s1=—1 sx=s53=1 p1=1 pr=p3=0 (2.1%)
s1=1 so0=1 s3=-1 pi1=1 p,=0 p3=1 (2.19)
s1=s2=-1 s3=1 pr=p2=1 p3=0 (2.1%)
and
s1=s52=s53=—1 pr=p2=p3=1 (2.1%)

for the setsS;{—S7 andSg, respectively.
Starting from the solutio®~ (&, 1, ¢), which obeys the Neumann conditions, we obtain
again an algebraic system of equations in the form

[e.¢] o0 o0
Y D0 TFijmn = VVET (0)8u8imbin] fimn =0 (2.16)

=0 m=0n=0
fori, j,k=0,1,..., with

1
Fijklmn - Z[(zl + P1)2 + (2] + P2)2 + (Zk + p3)2]8i16jm8kn

M 1 J
1 J _ _
ron® S an® 3 (5) 3 (3 Jarnanal B k)
I=1 J=0

K=0

XIRIL,S + 2Ry RS, + 53Rl ) (2.17)

Here, the parameters, s», s3, p1, p> and pz defined by (2.15) are also used for the
Neumann basis sets in (2.7). Moreover, an additional adjustable parasndtes been
introduced which should be taken as

o = N;jiNmn o =2N;;oNimo o =2N;0xNion o = 2Ny, kNomn
2.18)
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and
o =4N;00MNi00 o = 4Ny ;. oNomo o = 4No0xNoon o=1 (2.18)
for S; =S, andS;—Sg, respectively.
On the numerical side of the work, we deal with the truncated solutions
N-1N-1N-1

OYEN =D YD hijk pijn(€. 0. 0) (2.19)
i=0 j=0 k=0
and
N—-1N—-1N-—
O &, =) Fijk ik, ©) (2.20)
i=0 j=0 k=
where N is the truncation order. In this case, the equations in (2.11) and (2.16) describe
finite algebraic systems of ord&3. As long asN remains finite it can be deduced, by
recoding the indexes aff;jx;m, and Fjum,, that these systems are expressible in the form
of standard matrix eigenvalue problems. In fact, if we define the integer transfornigtion
T : Ng — N?,
T={U,J)eN?>:1=IN>4+mN +n+1andJ =iN?>+ jN +k+1,
Y(, j, k,1,m,n) € N§} (2.21)
then Hijximn (Fijiimn) andé;;8;,,8k, are converted to a matrix4; ;] and the identity matrix
[8;,] of orders N3, respectively, wherdN = {1,2,...} is a subset of the set of natural
numbers andYo = {0} UN. Similarly, the mappings, S : N3 — N,
S={JeN:J=iN’>+jN+k+1, Y(,j k) N3 (2.22)
transformsh; i, (fijx) With i, j,k=0,1,..., N —1intob; with J =1, 2, ..., N3 Hence
we may represent (2.11) and (2.16) in the form
N3
D (A —vES; b, =0 I1=12... N (2.23)
J=1
It should be noted that the matrix} ;] is symmetric due to the block symmetry &5 i/,
(Fijklmn)l ie. Hijklmn = Hlmnijk (Fijklmn = Flmnijk)'

=

3. Applications to quartic and sextic oscillators

The generalized anharmonic oscillators are being investigated with considerable intensity,
motivated by quantum mechanical problems in field theory and molecular physics. A
detailed review of the anharmonic eigenvalue problems is outside the scope of this article,
but they provide a convenient testing ground for the present approximation.

In table 1, we calculate the ground-state eigenvalue of the quartic oscillator,

V(x,y,2) = x%y% + x%2% 4 y%? (3.1)
to illustrate how the method can be applied in finding error bounds as the confinement
parameter? varies. To denote lower and upper bound results we employ the notation
wherein, for example, /B means that the eigenvalue is bounded by 1Egpo < 3, if
¢ = 2.0. Similarly, 2169 856 706 3@5 at¢ = 6.05 implies more rigorous two-sided

bounds such that.269 856 706 36< Eppo < 2.169 856 706 95. As another specific
example, we examine the lowest three energy levels of the sextic oscillator

V(x,y,2) = x%+ y? + 22 + vs(x® + y° + 2° + 6x2y?%2?) (3.2)
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Table 1. Lower and upper bounds to the ground-state eigenvalue of the quartic oscillator in
(3.1), as a function of the confinement paraméter

V4 N Eo0,0

2.00 4 13

2.50 4 2105228
3.00 5 21598788
3.50 6 21686/710
4.00 7 21697497

4.50 9 216984766

500 11 2169856174

550 12 21698566873
575 13 216985670014
6.05 14 2169856706 3M5

Table 2. Lower and upper bounds to the first three eigenvalues of the sextic oscillator in (3.2)
wherevg = 10°, as a function of the confinement parameter

4 N Eo00 Eo01= Eo10= E100 E110=E101=Eo11
0.325 5 1124 21822 3306

0.350 5 11324/43 21921 3335

0.375 6 113333/51 220025/74 333665/773

0.400 7 1133423/33 2200497/524 3336998/7035

0.425 9 11334276087 220051079161 333701666778

0.450 11 113427735797 220051 12077202 3337017232}1491
0.475 12 11342 773774072 220051121 40717 333701724 08094
0.485 13 1134277377513 220051121411623 333701724 086676

in the same manner to check if there is any difficulty in passing from a quartic oscillator to
such a sextic oscillator with a very large value of 16 (table 2).

For the sake of a systematic numerical analysis, we may consider the general form of a
quartic oscillator which is obtainable from (1.2) witi = 2. If we assume the interchange
symmetries in (1.5) of the coordinates and introduce a simple scaling transformation, this
potential can be written concisely in the form

Vx,y,2) = x2 + y2 4+ 22 ealx* 4+ y* + 24 4 2062y 4 1222 + y22)] (3.3)

involving only two effective coupling constantg and«. It is apparent that for a non-
negative quartic anharmonicity, should be necessarily positive. The casepof 0 leads
to the harmonic oscillator which is trivial. Moreover, the condition

1

is sufficient to make the potential bounded below. In the two-dimensional problems, it
is possible to find unitary transformations which suggest that the eigenvalue equation can
be investigated in the range of —1 < o < 1, without any loss of generality [9, 18].
Unfortunately, however, there are no such transformations in three-dimensional space, and
the only restriction onx is given by (3.4). Therefore, the lower and upper bound energy
levels of the quartic oscillator are reported farvalues of 103, 1, and 16 in tables 3, 4
and 5, respectively, as a function @fby takingo = —%, 0,1 and 10.

Finally, we deal with the sextic oscillator in (1.2), whevg = 0 andM = 3. On
making use of a linear scaling and taking advantage of the interchange symmetries of the
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Table 3. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
ca = 1073, as a function ofx.
o Ler N {ni, n2, n3} Epinong Basis set
-1 550 11 {0,0,0 3.0014978514p1  S;/S;
580 11 {0,0,1-{0,1,0 —{1,0,0 5.003492259845 S, /ST —S3/ST —S; /S
570 11 {1,1,0 -{1,0,1 -{0,1,1 7.0044907640810 S;/Sd —Sg/Sg —S7 /57
586 11 {0,0,2 7.007471819657  S; /ST
587 11 {0,2,0 -{2,0,0 7.008969294023  S;/S; —S; /ST
570 11 {1,1,1 9.004491880915  Sg/Sg
6.05 12 {0,2,1-{0,1,2 -{1,0,2 9.007802185746 S, /ST —S3/S§ —S; /S
6.05 12 {2,0,3-{2,1,06-{1,2,0 9.00897485587 S, /ST —S3/S; —S,/S;
6.05 12 {0,0,3 -{0,3,0 —{3,0,0 9.0165922128p09 S, /Sy —S;/Sy —S, /Sy
0 550 11 {0,0,0 3.002246078043  S;/S}
570 11 {0,0,3-{0,1,0 —{1,0,0 5.005237133502 S, /ST —S3/ST —S; /S
580 11 {1,1,0 -{1,0,1-{0,1,1 7.0082281890f2  S;/Sd —Sg/Sg —S7/S7
590 12 {0,0,2-{0,2,0 -{2,0,0 7.011209258146  S; /ST —S; /ST —S; /ST
570 11 {1,1,1 9.0112192444%3 Sy /Sy
6.05 12 {0,2,4-{0,1,2-{1,0,2 - 9014200313624 S, /Sy —S3/S3 -S;/S; -
(2,0, -{2,1,0 - {1,2,0 S5 /Sy —S5/S3 - S, /Sy
6.05 12 {0,0,3-{0,3,0 -{3,0,0 9.0201499773R47 S, /ST —S3/ST —S,/S;
1 550 11 {0,0,Q 3.00373974818  S;/Sf
580 11 {0,0,1-{0,1,0 —{1,0,0 5.008717444478 S, /ST —S3/S§ —S; /S
580 11 {1,1,0-{1,0,3-{0,1,1 - 7015675918901  S;/SI —Sg/S¢ —S7/S7 -
{0,0,2 —{0,2,0 Sy /Sy —S; /ST
580 11 {2,0,0 7.0186525920210  S; /ST
570 11 {0,2,1-{0,1,2 -{1,0,2 — S5 /Sy —S5/83 -, /S; -
1,1,3 - 9.0246093545862 Sz /Sg —
(2,0, -{2,1,0 - {1,2,0 S5 /S —S3/S3 - S, /S§
590 11 {0,0,3-{0,3,0 -(3,0,0 9.0295595274070 S, /ST —S3/ST —S,/S;
590 11 {1,1,2-{1,2,4-{2,1,1 — S5 /SE —Sg/S¢ —S7/S7 —
{0,2,2 -{2,0,2 -{2,2, - 110355119797801 S;/S7 -S; /ST —S;/Sf -
{1,3,0 -{1,0,3 -{0,1,3 S5 /SE —Sg /SE - S7 /ST
10 550 11 {0,0,0 3.017020559646  S;/Sf
580 11 {0,0,3-{0,1,0 —{1,0,0 5.03949641784/5 S, /ST —S3/S§ —S;/S;
6.00 12 {0,0,2-{0,2,0 7.055114700357  S;/S{ —S; /S|
570 11 {1,1,0 -{1,0,1 -{0,1,1 7.0811614270486 S /Sd —Sg/S¢ —S7/SF
6.00 12 {2,0,0 7.0838531774%1 S; /S
6.00 12 {0,2,1-{0,1,2 -{1,0,2 9.082310599927 S, /ST —S3/S§ —S; /S,
6.00 12 {2,0,3-{2,1,0-{1,2,0 9.1159174523% S, /ST —S3/S; —S,/S;
560 11 {1,1,1 9.141495012627  Sg/Sg
6.10 12 {0,0,3-{0,3,0 -{3,0,0 914498894402 S, /ST —S3/ST —S; /S

coordinates, we again minimize the number of coupling constants.
characterized by the function

V(x, v, 2) = x% + y% + 2%+ colx® 4+ y8 4+ 28 + 38(x*y2 4+ x%2% + 1%yt 4+ 2%t + y42?
+y%z%) + 6yx®y*2?] (3.5)
with three parameters, 8 andy. Here,ce > 0, and it can be shown after some algebra that
68 +2y > -1 (3.6)
for a required non-negative sextic anharmonicityy i#2 1. Fory = 1, we must have
B> — % 3.7)

So the potential is
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Table 4. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
c4 = 1, as a function ofr.

o Ler N {ni, n2, n3} Epinong Basis set
-1 350 11 {0,0,0 3.854803298313  S;/Sf
365 12 {0,0,1-1{0,1,0 —{1,0,0 6.730816582278 S, /ST —S3/ST —S; /S
375 12 {1,1,0-{1,0,1-{0,1,1 9.2720207396870 S;/Sd —Sg /Sg —S7 /57
365 12 {0,0,2 9.949866 7333249 S /ST
350 11 {0,2,0 -{2,0,0 10.690 70153415 S;/ST —sy/st
365 11 {1,1,1 11.412 02920209 Sg /S¢
365 12 {0,2,1-{0,1,2-{1,0,2 12.3055291690711 S, /ST —S3/S§ —S;/S4
365 12 {2,0,1-{2,1,0 -{1,2,0 13.076 148 80002 Sy /St —S5/83 - S, /Sy
375 12 {1,1,2-{1,2,3-{2,1,% 14.378446526989  S;/Sd —Sg /Sg —S7 /ST
365 12 {0,0,3-1{0,3,0 -(3,0,0 14.779 954 44118 Sy /S —S3/S3 - S, /Sy
0 345 11 {0,0,0 4.1770549245860 Sy /ST
345 11 {0,0,1-{0,1,3 -{1,0,0 74335159872/ S, /ST —S3/S§ —S; /S
345 11 (1,1, -{1,0,-{0,1,3 10.6899770498500 S /Sd —Sg /Sg —S7/S7
345 11 {0,0,2-{0,2,3 -{2,0,0 11.439753240710  S;/ST —S; /ST —S; /ST
345 11 ({1,1,1 13.946 438 11267 Sg /S
350 12 {0,2,1-{0,1,2 —{1,0,2 — 1469621430346 S5 /Sy —S5/S3 —S; /Sy —
{2,0,3-{2,1,0 - {1,2,0 Sy /St —S3/83 - S, /Sy
350 12 {0,0,3-{0,3,3-{3,0,0 15941507 180814 S, /ST —S3/S3 —S;/S;
1 325 11 {0,0,0 4.6488127041725 Sy /ST
335 11 {0,0,34-{0,1,0 —{1,0,0 8.3803425300713 S, /ST —S3/ST —S;/S4
330 11 {1,1,0-{1,0,3-{0,1,1 - 12485556050811  S;/SI —S5/S¢{ —S7/S7 -
{0,0,2 -{0,2,0 Sy /Sy —S; /St
335 11 {2,0,0 13156803897784  S; /S|
345 11 {0,2,3-{0,1,2-{1,0,2 - Sy /St —S3/8% -, /S; -
1,1,1 - 16904 036 70346 Sg/Sa -
{2,0,3-{2,1,0 - {1,2,0 S5 /S —S3 /83 - S, /SF
345 11 {0,0,3-{0,3,3-{3,0,0 17.861 796 90035 S5 /Sy —S5/83 - S, /Sy
335 11 {1,1,2-{1,2,3-{2,1,1 — S5 /St —S5/Sg —S7/S7 -
{0,2,2 -{2,0,2 -{2,2,0 — 2159503757405 Sy /Sy —Sy/ST —S1/ST -
{1,3,0 - {3,0,14 - {0,3,1 S5 /SE —Sg /Sg —S7/S%
10 312 13 {0,0,0 6.7837412577881 S;/ST
3.14 13 {0,0,1-{0,1,3 -{1,0,0 1237238413824 S5 /Sy —S3/83 - S, /S§
314 13 {0,0,2-{0,2,0 17.135018744769  S;/S; —S; /ST
314 13 {2,0,0 1934024772493  S; /S
3.00 13 {1,1,0-{1,0,1-{0,1,% 19.700467 40379 S5 /SE —Sg /Sg —S7/S%
319 13 {0,2,3-{0,1,2-{1,0,2 2295542838583 S, /Sy —S3 /Sy —S, /S
3.07 13 {2,0,1-{2,1,0-{1,2,0 26.102 785 96957 S5 /S§ —S5/S3 - S, /Sy
321 13 {0,0,3-{0,3,3-{3,0,0 27.721566396887 S, /S] —S3/Sy —S,/Si
285 12 {1,1,1 27.996375330812 S, /Sy

Therefore, we tabulate the lower and upper bound eigenvalues of (3.5) in tables (6), (7) and

(8) for cg values of 102, 1 and 18, respectively. Each table includes a setfofind y
parameters, such that

(B.y) {(& -1, (1, -1), (10, -1), (3. 0). (0,0), (1. 0), (3, 1), (0, 1), (1, 1)}

(3.8)

satisfying (3.6) and (3.7). Tables 3-8 also contain the quantum nurhbers,, ns} of the
energy levels and their respective basis sets, the truncation trdgrthe wavefunctions
and the critical confinemertt,, at which the desired accuracy is obtained.
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Table 5. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where
ca = 103, as a function of.

o Ler N {n1, na, n3} Epinong Basis set
-1 140 14 {0,0,0 26.954 38884123 Sy /ST
132 13 {0,0,3-{0,1,0 —{1,0,0 48.622 258 50305 S, /S3 —S3/SY —S; /S
1.36 13 {1,1,0 -{1,0,1 —{0,1,% 65.313429301p43  S; /S —Sg5/S¢ —S7/SF
140 14 {0,0,2 72.158150800015 S, /S;
142 14 {1,1,%3 76.325687730129 S5 /Sy
144 14 {0,2,3-{0,1,2 —{1,0,2 85419545062773 S, /Sy —S3/S§ —S;/SE
139 14 {0,2,0 -{2,0,0 85.518934580220  S;/S{ —S; /ST
147 14 {1,1,2-{1,2,3-{2,1,3 96.389107103251  S; /S —S5/Sg —S7/S%
144 14 {0,2,2 101767899052116  S;/S;
128 13 {2,0,1-{2,1,6-{1,2, 1019774586505 S, /S3 —S3/SY -S; /S
0 1.13 12 {0,0,0 31919366133%40 S /ST
112 12 {0,0,1-{0,1,3 —{1,0,0 59.366410881922 S, /Sy —S;/S3 —S;/S;
112 12 (1,1, -{1,0,14 -{0,1,1 86.8134556299303 S; /SI —Sg/Sg —S7/S7
113 12 {0,0,2 -{0,2,3 —{2,0,0 95.960981622731 Sy /Sy —S; /ST —S; /ST
1.10 11 {1,1,3 114260500 3779 Sg /Sa
112 12 {0,2,4-{0,1,3 —{1,0,2 — 1234080263702 S, /S3 —S3/SY -S;/S§ -
{2,0,3-{2,1,0 - {1,2,0 S, /S3 —S53/SY —S,/S;
112 12 {0,0,3 -{0,3,3 —{3,0,0 137.882 776 35365 S, /S5 —S3/S§ —S;/S;
1 110 11 {0,0,Q 38.086 83345934 Sy /st
110 11 {0,0,14-{0,1,0 - {1,0,Q 71.217 716 63157 S, /S3 —S3/SY —-S; /S
110 11 {1,1,6 -{1,0, —{0,1,1 — 108595 2587389 Sg/Se —Sg/SE —S7 /5% -
{0,0,2 -{0,2,0 S1/Sy -Sy/ST
1.10 11 {2,0,0 116603198 9378 S; /St
110 11 {0,2,3-{0,1,2-{1,0,2 - S, /Sy —S5/S§ —S;/S§ -
1,1,1 - 149439 0455801 Sg /Sy —
{2,0,3-{2,1,0 - {1,2,0 S5 /S; —S3/SY -S;/SE
112 12 {0,0,3 -{0,3,3 —{3,0,0 160514 558 0447 S, /S3 —S53/S§ —S,/S;
110 11 {1,1,2-{1,2,4-{2,1,1 - Sg/Se - S5 /St -S7 /ST —
{0,2,2 -{2,0,2 - {2,2,0 — 1932488206436 S1/S; - Sy/ST -S{/St -
{1,3,0 - {3,0,14 - {0,1,3 S5 /St —Sg/Sg —S7/SF
10 096 12 {0,0,0 62.444077561750 Sy /ST
1.02 14 {0,0,1-{0,1,3 - {1,0,0 11545323201921 S, /S3 —S3/SY —S; /S
101 14 {0,0,3 -{0,2,0 15949217990131  S;/S} —S; /ST
1.01 14 {2,0,0 182424212632701 Sy /S
093 12 {1,1, -{1,0,3 —{0,1,1 187.200 352 82436 Sg /Se —Sg /S¢ =S5 /5%
1.03 14 {0,2,3-{0,1,2 —{1,0,2 214929362459535 S, /S; —S5/S§ —S, /Sy
1.02 14 {2,0,1-{2,1,6 -{1,2,0 2487330899004 S5 /S5 —S3/S5 =S, /S;
1.03 14 {0,0,3-{0,3,3 —{3,0,0 265057585588668 S, /S; —S;/S4 —S,/Si
090 12 {1,1,1 268739 78154452 Sg /Sy

4. Discussion

In this paper, an extensive numerical analysis of three-dimensional anharmonic oscillators is
presented via the confined system which generates converging eigenvalue bounds. Tables 1
and 2 exhibit evidently the typical aspects of the method. First, the method can be applied
equally well to the quartic and sextic oscillators. Second, the accuracy of the results
can be improved by increasing appropriately the boundary pararhet&urthermore, it

is deduced from tables 3-8 that there is no accuracy loss in a very wide range of the
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Table 6. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where
c6 = 1073, as a function of8 andy.

y B Ler N {n1, n2, n3} Epinong Basis set
-1 % 550 11 {0,0,0 300591071158  Sy/Sf
550 11 {0,0,1-{0,1,0 —{1,0,0Q 5.017549679086 S, /S] —S3/St —S; /St
550 11 {1,1,0-{1,0,3—{0,1,1  7.029143013813  S;/S{ —S5/S{ —S7/S7
550 11 {0,0,2 7.051584425388  S; /S
1 525 10 {0,0,0 3.011350229480 S;/ST
550 11 {0,0,3-{0,1,0 —{1,0,  5.0335585568B9 S, /S; —S;/S§ —S; /Sy
550 11 {1,1,3 -{1,0,1 —{0,1,1 7.0693040411p1  S;/SE —Sg/S§ —S7/57
550 11 {0,0,2-{0,2,0 7.0774360381720 S;/S{ —S; /ST
10 5.00 10 {0,0,Q 3.063696942567  Sy/ST
525 11 {0,0,1-{0,1,0 —{1,0,0Q 5178879727967 S, /S3 —S3/St —S; /S
525 11 {1,1,0-{1,0,3—{0,1,1 7409006072145 S;/Si —Sg/S{ —S7/S7
525 11 {0,0,2 -{0,2,0 7.304657341047  S;/S{ -S; /ST
0 -% 525 10 {0,0,0 3.0044408192880 Sy /ST
550 11 {0,0,1 -{0,1,0 —{1,0,0Q 5.013191576001 S, /S3 —S3/ST —S; /St
550 11 {1,1,0 -{1,0,3-{0,1,3  7.0190567290%  S;/Si —Sg/Sg —S7/S%¥
550 11 {0,0,2 7.0387635758%  S; /ST
0 525 10 {0,0,0 3.005546446712 Sy /ST
525 10 {0,0,3-{0,1,0 —{1,0,0 5016478591816 S, /S; —S;/S4 —S; /St
550 11 {1,1,3 -{1,0,1 -{0,1,1 7.027410736986  Sg/Si —Sg /S —S7/S7
550 11 {0,0,2 -{0,2,0 —{2,0,0 7.048497556915 S /ST —-Si/ST —S; /ST
1 525 10 {0,0,0 3.0120673270p1  S;/Sf
525 11 {0,0,1-{0,1,0 —{1,0,0Q 5035655952212 S, /ST —S3/ST —S; /St
550 11 {1,1,0 -{1,0,3-{0,1,13  7.07542433837 S;/Si —Sg/S¢ —S7/S%
550 11 {0,0,2 -{0,2,0 7.0794549395/6  S;/S; -S; /ST
1 -1 525 10 {0,0,0 3.00407343418  S7/ST
550 11 {0,0,1 -{0,1,0 —{1,0,0Q 5.012104761212 S, /S3 —S3/S§ —S; /S
550 11 {1,1,0-{1,0,1-{0,1,1 7.01726713797  S;/SI —Sg /S§ —S7/S7
550 11 {0,0,2 7.0355915316771 S; /ST
0 525 10 {0,0,0 3.0062823204%  Sy/ST
550 11 {0,0,3-{0,1,0 —{1,0,  5.018666315278 S, /S; —S; /S —S; /St
550 11 {1,1,3 -{1,0,1 -{0,1,1 7.033906257689  Sg/Sd —Sg /S —S7 /57
550 11 {0,0,2 -{0,2,0 7.050636386088  S;/S; —S;/ST
1 525 10 {0,0,0 3.0127809606870 Sy /ST
525 10 {0,0,1 -{0,1,0 —{1,0,0Q 5.037735793508 S, /S3 —S3/S§ —S; /S
525 10 {1,1,0-{1,0,1-{0,1,1 7.081459967 487  S;/SE —Sg/S¢ —S7/S7 —
{0,0,2 —{0,2,0 Sy /Sy —Sy/sT
550 11 {2,0,0 7110092855857 Sy /ST

anharmonicity constants. In fact, a significant property of this class of eigenvalue problems
is the existence of two distinct regimes of values of the coupling constants and the quantum
numbers. The two regimes are referred to as the nearly harmonic and the nearly pure
anharmonic, respectively, for the small and large values of the eigenvalue parameters. It
is well known that most of the numerical techniques are efficiently used in one of these
regimes. Therefore, the confined system approach makes our method more versatile and
applicable with uniform precision to almost any type of Sahinger potential. We believe

that the spectrum of a perturbed three-dimensional Hamiltonian in the present generality is
computed for the first time.



3106

H Taseli and R Eid

Table 7. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where

cg =1, as a function o8 andy.

y B fta N {ni, no n3 Eninons Basis set
-1 1 265 12 (0,00 4.3434861626877 Sy /ST
265 12 {0,0,3-{0,1,0 —{1,0,0  7.9637090784473 S, /S; —S3/S5 —S; /St
265 12 (1,1, -{1,0,1 —{0,1,1 11.483 804 21507 S5 /Se —Sg /S§ —S7 /5%
265 12 {0,0,2 12825266601834 S, /Sy
1 265 10 {0,0,0 4919667855012  S7/ST
265 11 {0,0,1 -{0,1,0 —{1,0,0 9.21899165008L3 S, /S, —S3 /St —S; /St
265 11 {1,1, -{1,0,3 (0,1, 1404987403523  S;/SI —Ss/S¢ —S;/S7
265 11 {0,0,2-1{0,2,0 14.416 607 150913 S;/ST -sy/sf
10 245 12 {0,0,0 7.060561585026  Sy/S
245 12 {0,0,3 -{0,1,0 —{1,0,0 1346552982825 S; /S% - S5/8F -8, /S
245 12 {0,0,2-{0,2,0 10.782277303859 S, /S{ ~Sy /Sy
238 12 (1,1, -{1,0,3 -{0,1,3 2180362361979 S5 /S& — S5 /S¢ —S7/SF
0 -3 270 12 {0,0,0 4116458109021  S7/Sf
277 12 {0,0,3-{0,1,0 -{1,0,0  7.44712967998 S, /S; —S;/S; -S;/S}
277 12 {1.1,0-{1,0.3-{0,1,}  10509404847903  S5/S, - S5/S¢ ~S; /87
277 12 {0,0,2 11680031851p46  S;/S;
0 265 12 {0,0,0 4.306 87385695708 S; /ST
265 12 {0,0,3-{0,1, —{1,0,  7.9046451755195 S, /S; —S;/S§ —S;/S}
265 12 (1,1, —{1,0,4 —{0,1, 150241649409 S5 /Se —Sg /S¢ —S7/S7
2.65 12 {0,0,2-1{0,2,0 —{2,0,0 12.837 871237090 S1/Sy —Sy/ST —-Sy/St
1 261 12 {0,0,0 4.9787789951R2  ST/ST
263 12 {0,0,33-{0,1,0-{1,0,0  9.3431896993%49 S, /S; —S;/S; —S;/S}
261 12 {1,1, -{1,0,3-{0,1,1} 1433371522902 S5 /Se - Sg /SE —S7 /ST
261 12 {0,0,3 —1{0,2,G 14502895902841  S;/S; —S; /ST
1 -1 282 12 (0,0, 4.0624645584193 ST /ST
289 12 {0,0,4-1{0,1,0 —{1,0,  7.3428310403875 S,/S; —S;/S§ -, /S}
294 12 (1,1, -{1,0,1 - {0,1,  10436511434¢55 sg/sg - S5 /S§ —S7/87
291 12 {0,0,2 11566 697092359 S /S;
0 263 12 {0,0,0 4.41724116590613 ST /ST
263 12 {0,0,3-{0,1,0 (1,0,  81618197331786 S,/S, —S;5/S{ —S;/S}
263 12 {1,1,0 -{1,0,4-{0,1,  12100307652030  Sg/S{ —Sg/S¢ —S;7/S7
263 12 {0,0,2 —{0,2,0 13016318226297 Sy /Sy - S /Sy
1 262 12 {0,0,0 5033395937704  S7/ST
262 12 {0,0,3-{0,1,0 —{1,0,0  9.4555352767/91 S, /S; —S;/S§ —S;/S;
262 12 {1,1,0 —{1,0,1 —{0,1,1 — 1458413294578 Sc /St —Sg /S¢ —S7/S7
{0,0,2 -{0,2,0 S1/S{ = S{/S{
262 12 {2,0,0 15989440787484 Sy /Sy

The crucial point of our approximation lies in the determination of a critical confinement
size denoted by, to achieve satisfactory results. We infer that this depends mainly on
the dominant terms of the potential function and the quantum numbers of the state being
considered. It is noteworthy that the requirégl values can be estimated roughly after
a few computer experiments. As a matter of fact, it is unnecessary to find these values
very precisely since the accuracy of the results is virtually the same in the near vicinity
of a specific confinement. Obviously, because both lower and upper bounds are calculated
simultaneously for a predicteé, there is no uncertainty in the tabulated eigenvalues.
Hence, the numerical evaluations support completely the theoretical analysis in the appendix.
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Table 8. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where

cs = 10%, as a function ofg andy.

3107

y B Al N {ni, n2, n3} Epinong Basis set
-1 % 113 12 {0,0,0 1971321948562 Sy /ST
114 12 {0,0,1-{0,1,G —{1,0,0 37.806450881722 S, /S3 —S3 /ST —S; /St
114 12 {1,1,0 -{1,0,3-{0,1,3 55.066 790550847  Sg /Sd —Sg /S§ —S7 /57
1.15 13 {0,0,2 63491336881884 S, /S]
1 110 12 {0,0,0 2376923629306  S;/S}
112 11 {0,0,3-{0,1,0 —{1,0,0 46.277484039/15 S, /S3 —S3 /ST —S; /S,
110 12 {1,1,0-{1,0,1-{0,1,1 71.995 67552429 S5 /Se —Sg /S§ —S7 /ST
111 12 {0,0,2-{0,2,0 74.282190335%414 S;/S{ —-S; /ST
10 1.03 12 {0,0,Q 37.148422814755  S;/ST
1.03 12 {0,0,1-{0,1,3 —{1,0,0 72.048647772876 S, /S; —S;/S§ —S; /St
1.03 12 {0,0,2-{0,2,0 10632918922674  S;/S; —S; /ST
1.01 12 (1,1, -{1,0,4 - {0,1,1 1182914346512 S5 /Se —Sg /S§ —S7 /ST
0 -% 117 12 {0,0,0 17.954909821125 Sy /ST
119 12 {0,0,1-{0,1,3 —{1,0,0 33995911898099 S, /Sy —S3 /ST —S; /St
1.21 12 {1,1,0 -{1,0,14 - {0,1,1 48.1722834377406 S;/SI —Sg/S§ —S7/S7
1.22 13 {0,0,2 55.3815093761998 S; /S
0 115 12 {0,0,0 194770503973  S;/S}
115 12 {0,0,3-{0,1,0 —{1,0,0 37510016 351720 S, /ST —S3 /ST —S;/SS
115 12 {1,1,0-{1,0,14-{0,1,1 55.542 982 30647 S5 /Sé —Sg /S§ —S7 /ST
115 12 {0,0,2 -{0,2,0 —{2,0,0 64.167180371374 Sy /ST —S;/S7 - S{/ST
1 112 12 {0,0,0 2416429266213 Sy /ST
1.12 12 {0,0,1-{0,1,3 —{1,0,0 4707327917343 S, /S3 —S3/ST —S; /St
112 12 {1,1,0 -{1,0,3-{0,1,3 7377046580986  S; /S —Sg/Sg —S7/S%
1.12 12 {0,0,2-{0,2,3 74.817379750022 S, /Sy —S; /ST
1 -1 127 13 (0,0,0 17.557 464678899 Sy /ST
1.27 13 {0,0,1-{0,1,3 —{1,0,0 333423283679847 S, /S; —S3/ST —S; /St
1.30 13 {1,1,0 -{1,0,1 —{0,1,% 48.0391352733837 S /Si —Sg/S¢ —S7/S7
1.31 13 {0,0,2 55229896 8870964 S; /S
0 115 12 {0,0,0 203062329132 Sy /S}
115 12 {0,0,3 -{0,1,0 -{1,0,0 3934610278512 S, /ST —-S3/St —S;/St
114 12 {1,1,0 -{1,0,14-{0,1,1 59.615936580714  Sg/Sd —Sg/S§ —S7/57
1.15 12 {0,0,2 -{0,2,3 65.380914 760859 Sy /ST —S; /ST
1 112 12 {0,0,0 24525316086970  S; /ST
1.12 12 {0,0,1-{0,1,3 —{1,0,0 47785019 88026 S5 /S§ —S3/S§ - Sy /Sk
112 12 {1,1, -{1,0,3 -{0,1,3 — 7531847863767 S /S —S;/Sg —S7/S7 -
{0,0,2 - {0,2,0 Sy /Sy —Sy/ST
112 12 {2,0,0 84175583 775775 S /ST

It is shown from (2.23) that a truncated wavefunction of ordedeads to a matrix
eigenvalue problem of ordeN3. Since the diagonalization of a large matrix is highly
time consuming, we content ourselves with a truncation size of about 12 to 13, which
yields approximately 12 significant figures accuracy. Certainly, more accurate results can
be obtained at the cost of greater computation times. Another remark is that the convergence
rates of the Dirichlet and Neumann basis sets in (2.6) and (2.7) are almost equivalent.

Fora =1 andB = y = 1, we have the isotropic quartic and the sextic oscillators,
respectively. Therefore, the Séldinger equation (1.1) can be treated in spherical polar
coordinates by the separation of variables proposing a solution of theltyp®, ¢) =
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R(r)P,m(e)ém¢. Here, P (0) with [ > |m| are the associated Legendre functions, and
R(r) satisfies the radial Sctdinger equation

2
{rzd— + 2rE +r[E-V)] —1d+ 1)} R(r) =0. (4.1)
dr? dr
In this representation, each energy level is independent of the magnetic quantum aymber
m = 0,+1 +2,...,+l, and thus(2/ + 1)-fold degenerate. The spectrum then contains
non-degenerate eigenvalues corresponding te O, threefold degenerate eigenvalues
corresponding té = 1 and so on. This structure in the spherically symmetric cases can be
seen clearly from our tables. However, the computation of the spectrum directly from (4.1)
is an ongoing study. In fact, separate and particular research into the radiadiacfer
equation along this line seems to be quite interesting since it bears a different mathematical
character.

Another special situation occurs whan= 0 andg = y = 0 for the quartic and sextic
perturbations in (3.3) and (3.5), respectively. In these cases the problem reduces to three
independent quartic or sextic anharmonic oscillators. As a result, the energy levels are
expressible as

Eninong = Eny + Ep, + Eng 4.2)

whereE,, (i =1, 2, 3) denote the eigenvalues of the relevant problem in one dimension.
Equation (4.2) implies that the different permutations of a fixed set of quantum numbers
{n1, ny, n3} indicate the same energy, a property which clarifies the degeneracies of the
spectrum of the system. Hence the eigenvalues are either simgle=ifi, = n3 or threefold
degenerate if;; = n; # ni (i, j, k =1, 2, 3) or sixfold degenerate it; # ny # na.

Apart from the particular forms of the potentials, we observe that the mixed parity
states are threefold degenerate throughout. These energy levels with two even plus one
odd and with one even plus two odd quantum numbers are determined by iS¢ $8§9,

S3 (S3), S; (S;) andSe (S5), S¢ (Sg), S§ (S7), respectively. The eigenvalues with the
same parity yielded by the sefg (S7) andSg (Sg) are either single or doubly degenerate

in a three-dimensional system. This can easily be attributed to the interchange symmetries
of the potential functions considered numerically in this work.

On the other hand, in the case where= 0 and, therefore, (3.3) reduces to three
independent quartic oscillators, additional checks on the reliability and consistency of our
two-sided bounds are provided by making use of the numerical results of one dimension.
Indeed, very accurate eigenvalues are numerically knowvian = x2 + c4x* [2, 5], the
first three of which, performed in [2] by Banerjee, are listed in table 9. The energy levels
determined by the relation (4.2) are then compared in table 10 with the current eigenvalue
bounds estimated by the three-dimensional treatment of the problem. Fortunately, the results
are in excellent agreement for all states and anharmonicity constants. Moreover, the one-
dimensional sextic oscillator Hamiltonian

dx2
is an example of quasi-exactly solvable system provided that suitable algebraic relations
between the coupling constants hold. For instance, the ground-state eigenfunction is

d? .
(—— + vpx? 4 vax® + v6x6> v =FEV¥ “T Y(x)=0 (4.3)
X—> 00

1 1
Wo(x) = e a4 ~38¢° A= vg>0 B = Lugvg? (4.4)

with the corresponding energy
Eo=B (4.5)
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Table 9. The numerically exact eigenvalues of the one-dimensional quartic oscilfgtor =
x2 4+ c4x*, as a function of4. Data are taken from [2].

ca Eo Eq E;

103 1.000748692673 3.003739748168 5.009711872788
1 1.392351641530 4.648812704212 8.655 049957 759
10 10.63978871133 38.086 833459 38 74.681404 20016

Table 10. The comparison of the current eigenvalue bounds for the poteWiiial y, z) =
X2+ y2 4 22 + ca(x* + y* + z*) representing three independent quartic oscillators, with results
of the one-dimensional case. The results iy, + E,, + E,; With ny,n2,n3 = 0,1,2 are
calculated from table 9, while those fd,,,,,, and E;f,_,. stand for the lower and upper
bounds, respectively, in our tables 3, 4 and 5, whete 0.

- +
C4 {nl’ nz, }13} E”l + E"Z + E"3 E)11)12)13/En1n2n3

103  {0,0,0 3.002246078019  .802 246078013
{0,0, - {0,1,0 - {1,0,0 5.005237133514  .B05237133512
(1,1, - {1,0,1 - {0,1, 1 7.008228189009  .B08 228 189 OfR2
{0,0,2 - {0,2,0 - {2,0,0 7.011209258134  .011209 258 116
(1,1,3 9.011219244504  .0112192444%63

1 {0,0,0 4177054924590 4770549245960
{0,0,1 - {0,1,0 — {1,0,0 7.433515987272  .#33515987 260
1,1, —{1,0,3 - {0,1,  10.68997704995 1689 977 0499500
0,0,2 -{0,2,0 - {2,0,0  11.43975324082 1439753 240710

(1,1,3 13.94643811264 1846438 11267

16 {0,0,0 31.91936613398 3219366 133340
0,0,3 -{0,1,0 —{1,0,0  59.36641088204 5966410881922
1,1, - {1,0,3 - {0,1,1]  86.81345563009  88134556299303
0,0,2-10,2,0 - (2,0, 9596098162282  95.9609816227/31
(1,1, 114.260500 3781 11260 500 3779

for the special values aof,, v, = B — 34, as may be verified directly. In particular, for
vg = 1 andvs = 4 we see that, must be taken as 1 and thBy = 2. Thus the relation
(4.2) now suggests that the lowest eigenvalue of the potential

Vx,y,2) =x2+ 2+ 22 +4 +y + 2 + 18+ 8+ 8 (4.6)

representing three independent sextic oscillators, can be found analytically such that

Eo00 = 6. Table 11 demonstrates the rate of convergence of the lower and upper bounds in

this case, as a function @f which clarifies once more the accuracy of the present method.
In the second special case of the spherically symmetrical potentials for which

an_11-xx = 1 for all m, 1,k in (1.2), the substitution of? = x2 + y? + z? transforms

V(x, y, z) into a functionV (r) of a single variable, i.e.

M
V()= vor® (4.7)
m=1
and, hence, the eigenvalues of the original equation can be examined by the radial
Schiddinger equation in (4.1). As we pointed out earlier, potentials (3.3) and (3.5) are
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Table 11. Convergence rates of eigenvalue bounds as a functiofy &r the ground-state
energy of the sextic oscillator in (4.6), which is determined analytically, Eg€o 0 = 6, in the
unbounded domain.

¢ N Egoo® Ego,o(e)

1.00 5 33 8.4

150 5 5933 6.051

1.75 5 5.9980 6.0017

2.00 7 5.999986 6.000014

225 9 5.999999982 6.000000018
230 10 5.999999996 6.000 000 004
235 11 5.9999999993 6.000 000 0007

240 11 5.99999999988 6.000000000 12
245 12 5.999999999982 6.000000000018
250 13 5.9999999999974  6.000000 0000025

examples of this case when= 1 andB = y = 1, respectively. It can be deduced that
our bounds in tables 3-5 witlh = 1 are very good and consistent with the results of the
isotropic quartic oscillator already available in the literature [20-22]. Note that the notation
of the authors of [20, 21] differ from that of the present paper so that their anharmonicity
constants and eigenvalues should either be divided or multiplied by dcenersa We
have not introduced, however, any numerical table for a particular comparison in order not
to overfill the content of the paper with tabular material. Moreover, the eigensolutions of the
sextic oscillators/ (r) = vor? +var* 4+ ver® can be derived analytically for special values of
the parameters, similar to those of the one-dimensional case. The confidence in the accuracy
of our two-sided bounds has also been reconfirmed by utilizing exact results so determined.
In conclusion, the accurate results presented in the tables provide a rich information
about the spectral properties, which may be regarded as a guide to future numerical
methods to be developed for solving three-dimensional eigenvalue problems of this kind.
It is worth noting that the applicability of our method is not limited by the examples
which are numerically studied here. In contrast, the algorithm is sufficiently general in
its structure to incorporate any physical, more interesting, potentials having convergent
power series expansions about the origin. This follows from the fact that such potentials
can approximately be characterized by the arbitrary polynomial in (1.2), for which the
method is established. Note also that we are interested only in the energetic structure of
the Schédinger Hamiltonians calculating the spectral points. The eigenfunctions may be
examined as well to shed some light on the global behaviour of the system. For instance, we
have perceived, from table 1, that the rate of convergence of the successive approximations,
as N and? increase, is relatively slow for the eigenvalues of the potential (1.3), which is
perhaps an example of a chaotic system. Now that we are encouraged by the success of
the confined system approximation, more interesting problems such as chaotic Hamiltonians
will be investigated in the near future.
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Appendix. Variation of eigenvalues with respect to the confinement parameter in the
Dirichlet and Neumann problems

It is obvious that the eigensolutions of the enclosed &tinger equation (1.1), in which
R3 is replaced by, depend on the boundary parameter Therefore, any normalized
eigenfunction and the corresponding eigenvalue may be denoted by

U =Y(x,y,z 4 (A1)
and
E=E(®) (A.2)

respectively. Now, we present a theoretical analysis on the behaviol(©®fwhen the
wavefunction satisfies the Dirichlet and Neumann boundary conditions. Rewriting equation
(2.1) in the form

LY =0 L=-V24+V(x, v,2)— E{) (A.3)
on differentiating both sides with respect¢pwe obtain

dE
U— = L. A4
= L (A4)
If we multiply (A.4) by ¥ and integrate over the three-dimensional sp&cet follows
immediately that

dE
o = L) (A5)

where ket and bra notation stands for the inner product. Introducing the formal adjoint of
the operatorZ, we then find that

dE
oW surface integral terms (¥, £*W) (A.6)

in which the inner product on the right-hand side vanishes from (A.3) sthiseformally
self-adjoint with£* = £. Thus we have

dE 4 14 14 4
= / / (U, W, — W, )|“_ ,dydz +/ / (Wy Wy — W), drdz
—LJ—L —LJ—L

L pl
+/ / ("Ijz“pi - qjlyz(”ﬁ:—e dx dy (A?)
—0J—t

which may be simplified by using the boundary conditions.
In order to understand the meaning of partial derivatives with respett It us first
consider the total differential ob (x, y, z; £),

d¥ = W, dr + ¥, dy + ¥, dz + W, de. (A.8)

Nevertheless if, for instance; is a function of¢, x = f(¢), then & = (df/d¢) d¢ and
hence

d¥ = W, dy + ¥, dz + (‘-IJ( + 2—?%) de (A.9)
implying the operational equivalence
W, =W, + d—f\IJX. (A.10)

de
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Here, ¥, on the left-hand side should be regarded as the partial derivative of the function
W[f(),y,z ] of £,y andz only. So

\I’g = \I’g F ‘-IJx (All)
whenx = f(¢) = F¢. Likewise, we see that

v, =V, F \IJ), and v, =V, F VU, (A12)
wheny = F¢ and z = F¢, respectively. In accordance with (A.11) and (A.12), the
partial differentiation with respect t6 of the Dirichlet conditions in (1.7) and the Neumann
conditions in (1.8) lead to the equations

Vo(FL,y,2) FU(FL, y,2) =0

We(x, F4,2) FY,(x, F¢,2) =0 (A.13)

Welx, y, F0) F Y. (x,y, F6) =0
and

‘I’xz(:FE, Y, Z) + \Ijxx(:Fga Y, Z) =0

Wo(x, F,2) F W, (x, FL,2) =0 (A.14)

Woo(x, y, FO) F W (x,y, F6) =0
respectively. Therefore, in the case of the Dirichlet problem, substitutidrn d&fom (A.14)
into (A.7) gives
dE*

l l
9 / / [W2(¢, y. ) + WAL, y. )] dy d
de )

4 4
—/ f [W2(x, €, 2) + W2(x, —¢, 2)]dx dz
—J—¢

4 4
—/ / [W2(x, y, ) + W2(x, y, —0)] dx dy (A.15)
—J—¢

from which (1.9) is obtained by exploiting the reflection symmetries of the wavefunction.
In any case, however, we have shown that

+
d§7 <0 (A.16)

which completes the proof on the decreasing behaviout of?).
If we use the Neumann conditions (1.8) and the relations in (A.15), equation (A.7) takes
the form

dE— Y4 L
W:/ /[\D(Z,y,z)%x(&y,z)+‘If(—€,y,z)‘lfxx(—€,y,z)]dydz
—tJ—¢
4 4
+[ / [W(x, L, )W, (x, 0, 2) +V(x, =, )V, (x, —£, 2)]dx dz
—tJ—L

l L
4 f / [W(r, v, OV (x. v, €) + W(x, y. —OW..(x. y, —0)] dx dy. (A.L7)
N

Furthermore, examining the first integral

¢ ¢
11=/ / V(L y, D)W (4, y,2) dydz (A.18)
—tJ—t
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in (A.17) we may derive a more useful expression férdd¢. Indeed, from (A.3),/; can
be put in the form

l 4
I =/ / [V, y,2)— ETIW2(L, y,2) dy dz
—tJ—t

J4 4
[ [ wesot ey ¢ vy oy (A19)
—eJ e

for which the last term is integrated by parts to obtain

t 4
I =/ / (V. y.2) = ETIWA(L, y.2) + V3L, y.2) + W2(L, y.2)} dy dz. (A.20)
—tJ—¢

Other integrals are evaluated by repeating the same process, and, therefore, equation (A.17)
becomes

dE- (¢ [
de /—e L”V“’ v.2) = ETIWP(L, 3, 2) + Wi(E, v, 2) + W2(L, v, 2)
HV (=, y,2) — ETIWA(—L, y,2) + W2(—L, v, 2) + WA(=¢, y, 2)} dy dz
" /i fi{[v(x’ €,2) = ETIW(x, £,2) + WE(x, £,2) + W2(x, £, 2)
H[V(x, =€, 2) = ET]W2(x, =€, 2) + WE(x, =€, 2) + W2(x, =€, 7)} dx o

4 4
[ [ e o - E1000 0+ Wy 0+ W0
e

+[V(x,y, —0) — ETIWA(x, y, —0) + Wi(x, y, —0) + Wi(x, y, —0)} dx dy.
(A.21)
Under the assumption that the wavefunction possesses the reflection symmetries, this
equation reduces to the form of (1.10). Consequently,
dE~
de
subject to the sufficient condition thid] is beyond the classical turning points.

>0 (A.22)
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