The confined system approximation for solving non-separable potentials in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 313095
(http://iopscience.iop.org/0305-4470/31/13/013)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:31

Please note that terms and conditions apply.

The confined system approximation for solving non-separable potentials in three dimensions

H Taşeli and R Eid \dagger
Department of Mathematics, Middle East Technical University, 06531 Ankara, Turkey

Received 29 July 1997, in final form 6 January 1998

Abstract

The Hilbert space $L_{2}\left(\mathbb{R}^{3}\right)$, to which the wavefunction of the three-dimensional Schrödinger equation belongs, has been replaced by $L_{2}(\Omega)$, where Ω is a bounded region. The energy spectrum of the usual unbounded system is then determined by showing that the Dirichlet and Neumann problems in $L_{2}(\Omega)$ generate upper and lower bounds, respectively, to the eigenvalues required. Highly accurate numerical results for the quartic and sextic oscillators are presented for a wide range of the coupling constants.

1. Introduction

The determination of the spectra of one-dimensional quantum oscillators is 30 -year old science with many reliable methods developed to cope with the associated computational problem [1-6]. In spite of the existence of several moment-based asymptotic [3, 7] and perturbative [8-12] eigenenergy estimation techniques in two dimensions, however, the problem is still interesting from both numerical and theoretical viewpoints. In fact, a perturbation series expansion over the classical harmonic oscillator solution is divergentasymptotic, which was verified explicitly by Bender and Wu [13] in their important investigation into the quartic oscillator. Therefore, the methods starting with the use of a harmonic-like reference function usually show weak convergence properties, especially for strong anharmonic couplings [10, 12].

On the other hand, studies on the three-dimensional perturbed oscillators are rather limited, and few reported results are available in the literature [14]. Because most of the methods lead to the evaluation of multiple-infinite series or recursions, the solution of the wave equation in higher-dimensional spaces is quite complicated. Fortunately, the difficulty has been lessened considerably by the advent of powerful computers.

In the preceding articles, Taşeli and co-workers [15-19] have focused on truncating the infinite domain of the Schrödinger equation and modifying asymptotic conditions at infinity. In one and two dimensions, it was shown that the Dirichlet and Neumann problems yield an excellent accuracy through converging upper and lower bounds to the energy levels of the corresponding unbounded system. Thus the present paper deals mainly with a straightforward generalization and extension of these earlier works to the more challenging three-dimensional eigenvalue problems.

We consider the appropriately scaled Schrödinger equation in the form

$$
\begin{equation*}
\left[-\nabla^{2}+V(x, y, z)\right] \Psi(x, y, z)=E \Psi(x, y, z) \quad \Psi \in L_{2}\left(\mathbb{R}^{3}\right) \tag{1.1}
\end{equation*}
$$

\dagger Present address: Department of Mathematics, Çankaya University, 06530 Ankara, Turkey.
with a general polynomial potential of degree M
$V(x, y, z)=\sum_{m=1}^{M} v_{2 m} \sum_{l=0}^{m}\binom{m}{l} \sum_{k=0}^{l}\binom{l}{k} a_{m-l, l-k, k} x^{2(m-l)} y^{2(l-k)} z^{2 k} \quad v_{2 M}>0$
in x^{2}, y^{2} and z^{2}, where $v_{2 m}$ and $a_{m-l, l-k, k}$ are the coupling constants. The domain \mathbb{R}^{3} is truncated to a bounded domain, which is defined as a cubic box of sides 2ℓ units length,

$$
\begin{equation*}
\Omega=\{(x, y, z):-\ell \leqslant x, y, z \leqslant \ell\} \tag{1.3}
\end{equation*}
$$

preserving the symmetry of the original unbounded domain about the origin. Therefore, the potential in (1.2) has clearly the reflection symmetries

$$
\begin{equation*}
V(x, y, z)=V(\pm x, \pm y, \pm z) \tag{1.4}
\end{equation*}
$$

and, furthermore, interchange symmetries of three coordinates

$$
\begin{equation*}
V(x, y, z)=V(x, z, y)=V(y, x, z)=V(y, z, x)=V(z, x, y)=V(z, y, x) \tag{1.5}
\end{equation*}
$$

provided that
$a_{m-l, l-k, k}=a_{m-l, k, l-k}=a_{l-k, m-l, k}=a_{l-k, k, m-l}=a_{k, m-l, l-k}=a_{k, l-k, m-l}$
for $m=1,2, \ldots, M, l=0,1, \ldots, m$, and $k=0,1, \ldots, l$. Note that the wavefunction $\Psi(x, y, z)$ will then satisfy the same symmetries as well.

As indicated, we assume the Dirichlet

$$
\begin{equation*}
\Psi(\pm \ell, y, z)=\Psi(x, \pm \ell, z)=\Psi(x, y, \pm \ell)=0 \tag{1.7}
\end{equation*}
$$

and Neumann conditions

$$
\begin{equation*}
\Psi_{x}(\pm \ell, y, z)=\Psi_{y}(x, \pm \ell, z)=\Psi_{z}(x, y, \pm \ell)=0 \tag{1.8}
\end{equation*}
$$

over the surfaces of the box. Now the eigenvalues of (1.1) in Ω may be regarded as a function of the confinement parameter ℓ. So if they are denoted by $E^{+}(\ell)$ in the case of the Dirichlet conditions, then it can be shown, in analogy with the one- and two-dimensional problems [17, 18], that

$$
\begin{gather*}
\frac{\mathrm{d} E^{+}}{\mathrm{d} \ell}=-2 \int_{-\ell}^{\ell} \int_{-\ell}^{\ell} \Psi_{x}^{2}(\ell, y, z) \mathrm{d} y \mathrm{~d} z-2 \int_{-\ell}^{\ell} \int_{-\ell}^{\ell} \Psi_{y}^{2}(x, \ell, z) \mathrm{d} x \mathrm{~d} z \\
-2 \int_{-\ell}^{\ell} \int_{-\ell}^{\ell} \Psi_{z}^{2}(x, y, \ell) \mathrm{d} x \mathrm{~d} y \tag{1.9}
\end{gather*}
$$

and that $\mathrm{d} E^{+} / \mathrm{d} \ell$ is definitely negative (see the appendix). Thus the eigenenergies $E^{+}(\ell)$ of the Dirichlet problem decrease monotonically as ℓ increases providing upper bounds to those of the unbounded system, where $\ell \rightarrow \infty$.

In a similar fashion, the eigenvalues, $E^{-}(\ell)$ say, of the Neumann problem lead to the relation

$$
\begin{align*}
\frac{\mathrm{d} E^{-}}{\mathrm{d} \ell}=2 \int_{-\ell}^{\ell} & \int_{-\ell}^{\ell}\left\{\left[V(\ell, y, z)-E^{-}\right] \Psi^{2}(\ell, y, z)+\Psi_{y}^{2}(\ell, y, z)+\Psi_{z}^{2}(\ell, y, z)\right\} \mathrm{d} y \mathrm{~d} z \\
& +2 \int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(x, \ell, z)-E^{-}\right] \Psi^{2}(x, \ell, z)+\Psi_{x}^{2}(x, \ell, z)+\Psi_{z}^{2}(x, \ell, z)\right\} \mathrm{d} x \mathrm{~d} z \\
& +2 \int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(x, y, \ell)-E^{-}\right] \Psi^{2}(x, y, \ell)+\Psi_{x}^{2}(x, y, \ell)+\Psi_{y}^{2}(x, y, \ell)\right\} \mathrm{d} x \mathrm{~d} y \tag{1.10}
\end{align*}
$$

which remains strictly positive, if $|\ell|$ is beyond the classical turning points (see the appendix). It should be noted that this restriction on the confinement parameter ℓ is not necessary but sufficient to make $\mathrm{d} E^{-} / \mathrm{d} \ell$ always positive. Therefore, the eigenvalues of the Neumann problem is an increasing function of ℓ yielding lower bounds to the asymptotic eigenvalues.

In the appendix, an explicit proof on the decreasing and increasing behaviour of $E(\ell)$ stated by (1.9) and (1.10) is presented. As an important consequence, the Dirichlet and Neumann boundary value problems generate error bounds to the energy levels of the usual system on \mathbb{R}^{3}, in the sense that

$$
\begin{equation*}
E^{-}(\ell)<E<E^{+}(\ell) \tag{1.11}
\end{equation*}
$$

Hence, in section 2 we establish a variational method by means of simple trigonometric basis functions to determine E^{+}as well as E^{-}for an arbitrary polynomial in (1.2). In section 3, the procedure is applied to particular problems including the quartic and sextic oscillators. The last section concludes the paper with a discussion of the results.

2. Variational formulation with simple trigonometric bases

By introducing the coordinate transformations,

$$
\begin{equation*}
\xi=\frac{\pi}{\ell} x \quad \eta=\frac{\pi}{\ell} y \quad \zeta=\frac{\pi}{\ell} z \tag{2.1}
\end{equation*}
$$

the Schrödinger equation in (1.1) becomes

$$
\begin{equation*}
\left[-\nabla^{2}+v^{2} V(v \xi, v \eta, v \zeta)\right] \Psi(\xi, \eta, \zeta)=v^{2} E(\ell) \Psi(\xi, \eta, \zeta) \quad v=\frac{\ell}{\pi} \tag{2.2}
\end{equation*}
$$

with the scaled domain Ω,

$$
\begin{equation*}
\Omega=\{(\xi, \eta, \zeta):-\pi \leqslant \xi, \eta, \zeta \leqslant \pi\} \tag{2.3}
\end{equation*}
$$

If we first consider the wave equation for the motion of a free particle

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial \xi^{2}}+\frac{\partial^{2} \Psi}{\partial \eta^{2}}+\frac{\partial^{2} \Psi}{\partial \zeta^{2}}+\lambda \Psi(\xi, \eta, \zeta)=0 \tag{2.4}
\end{equation*}
$$

where the potential has been taken as

$$
V(\xi, \eta, \zeta)= \begin{cases}0 & \text { inside } \Omega \tag{2.5}\\ \infty & \text { outside } \Omega\end{cases}
$$

it is an easy matter to obtain exact analytical eigensolutions. Thus the normalized sequences of functions

$$
\begin{align*}
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \cos \left(i+\frac{1}{2}\right) \xi \cos \left(j+\frac{1}{2}\right) \eta \cos \left(k+\frac{1}{2}\right) \zeta \tag{2.6a}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \cos \left(i+\frac{1}{2}\right) \xi \cos \left(j+\frac{1}{2}\right) \eta \sin (k+1) \zeta \tag{2.6b}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \cos \left(i+\frac{1}{2}\right) \xi \sin (j+1) \eta \cos \left(k+\frac{1}{2}\right) \zeta \tag{2.6c}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \sin (i+1) \xi \cos \left(j+\frac{1}{2}\right) \eta \cos \left(k+\frac{1}{2}\right) \zeta \tag{2.6d}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \sin (i+1) \xi \sin (j+1) \eta \cos \left(k+\frac{1}{2}\right) \zeta \tag{2.6e}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \sin (i+1) \xi \cos \left(j+\frac{1}{2}\right) \eta \sin (k+1) \zeta \tag{2.6f}\\
& \phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \cos \left(i+\frac{1}{2}\right) \xi \sin (j+1) \eta \sin (k+1) \zeta \tag{2.6g}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \sin (i+1) \xi \sin (j+1) \eta \sin (k+1) \zeta \tag{2.6h}
\end{equation*}
$$

satisfy (2.4) and the Dirichlet boundary conditions when λ values are properly chosen for all $i, j, k=0,1, \ldots$. Furthermore, the functions

$$
\begin{align*}
& \varphi_{i j k}(\xi, \eta, \zeta)=\mathcal{N}_{i j k} \pi^{-3 / 2} \cos i \xi \cos j \eta \cos k \zeta \tag{2.7a}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=\sqrt{2} \mathcal{N}_{i, j, 0} \pi^{-3 / 2} \cos i \xi \cos j \eta \sin \left(k+\frac{1}{2}\right) \zeta \tag{2.7b}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=\sqrt{2} \mathcal{N}_{i, 0, k} \pi^{-3 / 2} \cos i \xi \sin \left(j+\frac{1}{2}\right) \eta \cos k \zeta \tag{2.7c}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=\sqrt{2} \mathcal{N}_{0, j, k} \pi^{-3 / 2} \sin \left(i+\frac{1}{2}\right) \xi \cos j \eta \cos k \zeta \tag{2.7d}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=2 \mathcal{N}_{0,0, k} \pi^{-3 / 2} \sin \left(i+\frac{1}{2}\right) \xi \sin \left(j+\frac{1}{2}\right) \eta \cos k \zeta \tag{2.7e}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=2 \mathcal{N}_{0, j, 0} \pi^{-3 / 2} \sin \left(i+\frac{1}{2}\right) \xi \cos j \eta \sin \left(k+\frac{1}{2}\right) \zeta \tag{2.7f}\\
& \varphi_{i j k}(\xi, \eta, \zeta)=2 \mathcal{N}_{i, 0,0} \pi^{-3 / 2} \cos i \xi \sin \left(j+\frac{1}{2}\right) \eta \sin \left(k+\frac{1}{2}\right) \zeta \tag{2.7g}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi_{i j k}(\xi, \eta, \zeta)=\pi^{-3 / 2} \sin \left(i+\frac{1}{2}\right) \xi \sin \left(j+\frac{1}{2}\right) \eta \sin \left(k+\frac{1}{2}\right) \zeta \tag{2.7h}
\end{equation*}
$$

are solutions of (2.4) with Neumann conditions, where $\mathcal{N}_{i j k}$ is a normalization constant defined by

$$
\begin{equation*}
\mathcal{N}_{i j k}=\left[\left(1+\delta_{i, 0}\right)\left(1+\delta_{j, 0}\right)\left(1+\delta_{k, 0}\right)\right]^{-1 / 2} \tag{2.8}
\end{equation*}
$$

in which $\delta_{i j}$ stands for the Kronecker delta. The 16 sets of functions in (2.6) and (2.7) comprise complete orthonormal bases for the Hilbert space $L_{2}(\Omega)$ which, henceforth, are referred to as $\mathbb{S}_{1}^{+}, \mathbb{S}_{2}^{+}, \mathbb{S}_{3}^{+}, \mathbb{S}_{4}^{+}, \mathbb{S}_{5}^{+}, \mathbb{S}_{6}^{+}, \mathbb{S}_{7}^{+}, \mathbb{S}_{8}^{+}$and $\mathbb{S}_{1}^{-}, \mathbb{S}_{2}^{-}, \mathbb{S}_{3}^{-}, \mathbb{S}_{4}^{-}, \mathbb{S}_{5}^{-}, \mathbb{S}_{6}^{-}, \mathbb{S}_{7}^{-}, \mathbb{S}_{8}^{-}$, respectively.

On the other hand, since the wavefunction of the full Schrödinger equation (2.2) belongs to the same space spanned by the $\phi_{i j k}$ or $\varphi_{i j k}$, we can propose the solutions

$$
\begin{equation*}
\Phi^{+}(\xi, \eta, \zeta)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} h_{i j k} \phi_{i j k}(\xi, \eta, \zeta) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{-}(\xi, \eta, \zeta)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} f_{i j k} \varphi_{i j k}(\xi, \eta, \zeta) \tag{2.10}
\end{equation*}
$$

for the Dirichlet and Neumann problems, respectively, where $h_{i j k}$ and $f_{i j k}$ are the expansion coefficients. The energy levels of a three-dimensional oscillator being considered are characterized by three quantum numbers n_{1}, n_{2} and n_{3}, i.e. $E \equiv E_{n_{1} n_{2} n_{3}}$. The spectrum can be decomposed into eight subsets owing to the reflection symmetries of the potential in (1.2). It is worth mentioning that the structures of the present bases give the possibility of taking care of these subsets individually in a natural way. In fact, the sets $\mathbb{S}_{1}^{+}\left(\mathbb{S}_{1}^{-}\right)$and \mathbb{S}_{8}^{+} $\left(\mathbb{S}_{8}^{-}\right)$can be used in the expansions (2.9) or (2.10) to determine the discrete states with the same parity, namely, three even or three odd. However, the eigenvalues with mixed parity, two even and one odd or one even and two odd, should be investigated by means of the others.

Hence the substitution of (2.9) into (2.2) reduces the Schrödinger equation to the secular equations

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left[H_{i j k l m n}-v^{2} E^{+}(\ell) \delta_{i l} \delta_{j m} \delta_{k n}\right] h_{l m n}=0 \tag{2.11}
\end{equation*}
$$

for $i, j, k=0,1, \ldots$, with

$$
\begin{equation*}
H_{i j k l m n}=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi_{l m n}\left[-\nabla^{2}+v^{2} V(v \xi, v \eta, \nu \zeta)\right] \phi_{i j k} \mathrm{~d} \xi \mathrm{~d} \eta \mathrm{~d} \zeta \tag{2.12}
\end{equation*}
$$

The entries $H_{i j k l m n}$ are nicely written in a compact form

$$
\begin{align*}
H_{i j k l m n}=\frac{1}{4}[& \left.\left(2 i+1+p_{1}\right)^{2}+\left(2 j+1+p_{2}\right)^{2}+\left(2 k+1+p_{3}\right)^{2}\right] \delta_{i l} \delta_{j m} \delta_{k n} \\
& +v^{2} \sum_{I=1}^{M} v_{2 I} v^{2 I} \sum_{J=0}^{I}\binom{I}{J} \sum_{K=0}^{J}\binom{J}{K} a_{I-J, J-K, K}\left[R_{i-l}^{(I-J)}+s_{1} R_{i+l+1+p_{1}}^{(I-J)}\right] \\
& \times\left[R_{j-m}^{(J-K)}+s_{2} R_{j+m+1+p_{2}}^{(J-K)}\right]\left[R_{k-n}^{(K)}+s_{3} R_{k+n+1+p_{3}}^{(K)}\right] \tag{2.13}
\end{align*}
$$

where $R_{k}^{(j)}$ denote the simple integrals of the type

$$
\begin{equation*}
R_{k}^{(j)}=\frac{1}{\pi} \int_{0}^{\pi} \theta^{2 j} \cos k \theta \mathrm{~d} \theta \tag{2.14}
\end{equation*}
$$

In this definition of $H_{i j k l m n}$ we have introduced the integer parameters $s_{1}, s_{2}, s_{3}, p_{1}, p_{2}$ and p_{3} to include every basis in (2.6), such that

$$
\begin{array}{ll}
s_{1}=s_{2}=s_{3}=1 & p_{1}=p_{2}=p_{3}=0 \\
s_{1}=s_{2}=1 \quad s_{3}=-1 & p_{1}=p_{2}=0 \quad p_{3}=1 \\
s_{1}=1 \quad s_{2}=-1 \quad s_{3}=1 & p_{1}=0 \quad p_{2}=1 \quad p_{3}=0 \\
s_{1}=1 \quad s_{2}=s_{3}=-1 & p_{1}=0 \quad p_{2}=p_{3}=1 \\
s_{1}=-1 \quad s_{2}=s_{3}=1 & p_{1}=1 \quad p_{2}=p_{3}=0 \\
s_{1}=1 \quad s_{2}=1 \quad s_{3}=-1 & p_{1}=1 \quad p_{2}=0 \quad p_{3}=1 \\
s_{1}=s_{2}=-1 \quad s_{3}=1 & p_{1}=p_{2}=1 \quad p_{3}=0 \tag{2.15g}
\end{array}
$$

and

$$
\begin{equation*}
s_{1}=s_{2}=s_{3}=-1 \quad p_{1}=p_{2}=p_{3}=1 \tag{2.15h}
\end{equation*}
$$

for the sets, $\mathbb{S}_{1}^{+}-\mathbb{S}_{7}^{+}$and \mathbb{S}_{8}^{+}, respectively.
Starting from the solution $\Phi^{-}(\xi, \eta, \zeta)$, which obeys the Neumann conditions, we obtain again an algebraic system of equations in the form

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}\left[F_{i j k l m n}-v^{2} E^{-}(\ell) \delta_{i l} \delta_{j m} \delta_{k n}\right] f_{l m n}=0 \tag{2.16}
\end{equation*}
$$

for $i, j, k=0,1, \ldots$, with

$$
\begin{align*}
F_{i j k l m n}=\frac{1}{4}[(2 i & \left.\left.+p_{1}\right)^{2}+\left(2 j+p_{2}\right)^{2}+\left(2 k+p_{3}\right)^{2}\right] \delta_{i l} \delta_{j m} \delta_{k n} \\
& +\sigma v^{2} \sum_{I=1}^{M} v_{2 I} \nu^{2 I} \sum_{J=0}^{I}\binom{I}{J} \sum_{K=0}^{J}\binom{J}{K} a_{I-J, J-K, K}\left[R_{i-l}^{(I-J)}+s_{1} R_{i+l+p_{1}}^{(I-J)}\right] \\
& \times\left[R_{j-m}^{(J-K)}+s_{2} R_{j+m+p_{2}}^{(J-K)}\right]\left[R_{k-n}^{(K)}+s_{3} R_{k+n+p_{3}}^{(K)}\right] . \tag{2.17}
\end{align*}
$$

Here, the parameters $s_{1}, s_{2}, s_{3}, p_{1}, p_{2}$ and p_{3} defined by (2.15) are also used for the Neumann basis sets in (2.7). Moreover, an additional adjustable parameter σ has been introduced which should be taken as

$$
\begin{equation*}
\sigma=\mathcal{N}_{i j k} \mathcal{N}_{l m n} \quad \sigma=2 \mathcal{N}_{i, j, 0} \mathcal{N}_{l, m, 0} \quad \sigma=2 \mathcal{N}_{i, 0, k} \mathcal{N}_{l, 0, n} \quad \sigma=2 \mathcal{N}_{0, j, k} \mathcal{N}_{0, m, n} \tag{2.18a}
\end{equation*}
$$

and
$\sigma=4 \mathcal{N}_{i, 0,0} \mathcal{N}_{l, 0,0} \quad \sigma=4 \mathcal{N}_{0, j, 0} \mathcal{N}_{0, m, 0} \quad \sigma=4 \mathcal{N}_{0,0, k} \mathcal{N}_{0,0, n} \quad \sigma=1$
for $\mathbb{S}_{1}^{-}-\mathbb{S}_{4}^{-}$and $\mathbb{S}_{5}^{-}-\mathbb{S}_{8}^{-}$, respectively.
On the numerical side of the work, we deal with the truncated solutions

$$
\begin{equation*}
\Phi^{+}(\xi, \eta, \zeta)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} h_{i j k} \phi_{i j k}(\xi, \eta, \zeta) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{-}(\xi, \eta, \zeta)=\sum_{i=0}^{N-1} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} f_{i j k} \varphi_{i j k}(\xi, \eta, \zeta) \tag{2.20}
\end{equation*}
$$

where N is the truncation order. In this case, the equations in (2.11) and (2.16) describe finite algebraic systems of order N^{3}. As long as N remains finite it can be deduced, by recoding the indexes of $H_{i j k l m n}$ and $F_{i j k l m n}$, that these systems are expressible in the form of standard matrix eigenvalue problems. In fact, if we define the integer transformation T, $T: \mathbb{N}_{0}^{6} \rightarrow \mathbb{N}^{2}$,
$T=\left\{(I, J) \in \mathbb{N}^{2}: I=l N^{2}+m N+n+1\right.$ and $J=i N^{2}+j N+k+1$,

$$
\begin{equation*}
\left.\forall(i, j, k, l, m, n) \in \mathbb{N}_{0}^{6}\right\} \tag{2.21}
\end{equation*}
$$

then $H_{i j k l m n}\left(F_{i j k l m n}\right)$ and $\delta_{i l} \delta_{j m} \delta_{k n}$ are converted to a matrix $\left[\mathcal{A}_{I J}\right.$] and the identity matrix [$\delta_{I J}$] of orders N^{3}, respectively, where $\mathbb{N}=\{1,2, \ldots\}$ is a subset of the set of natural numbers and $\mathbb{N}_{0}=\{0\} \cup \mathbb{N}$. Similarly, the mapping $S, S: \mathbb{N}_{0}^{3} \rightarrow \mathbb{N}$,

$$
\begin{equation*}
S=\left\{J \in \mathbb{N}: J=i N^{2}+j N+k+1, \quad \forall(i, j, k) \in \mathbb{N}_{0}^{3}\right\} \tag{2.22}
\end{equation*}
$$

transforms $h_{i j k}\left(f_{i j k}\right)$ with $i, j, k=0,1, \ldots, N-1$ into b_{J} with $J=1,2, \ldots, N^{3}$. Hence we may represent (2.11) and (2.16) in the form

$$
\begin{equation*}
\sum_{J=1}^{N^{3}}\left(\mathcal{A}_{I J}-v^{2} E \delta_{I J}\right) b_{J}=0 \quad I=1,2, \ldots, N^{3} \tag{2.23}
\end{equation*}
$$

It should be noted that the matrix $\left[\mathcal{A}_{I J}\right]$ is symmetric due to the block symmetry of $H_{i j k l m n}$ $\left(F_{i j k l m n}\right)$, i.e. $H_{i j k l m n}=H_{l m n i j k}\left(F_{i j k l m n}=F_{l m n i j k}\right)$.

3. Applications to quartic and sextic oscillators

The generalized anharmonic oscillators are being investigated with considerable intensity, motivated by quantum mechanical problems in field theory and molecular physics. A detailed review of the anharmonic eigenvalue problems is outside the scope of this article, but they provide a convenient testing ground for the present approximation.

In table 1, we calculate the ground-state eigenvalue of the quartic oscillator,

$$
\begin{equation*}
V(x, y, z)=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2} \tag{3.1}
\end{equation*}
$$

to illustrate how the method can be applied in finding error bounds as the confinement parameter ℓ varies. To denote lower and upper bound results we employ the notation wherein, for example, $1 / 3$ means that the eigenvalue is bounded by $1<E_{0,0,0}<3$, if $\ell=2.0$. Similarly, $2.16985670636 / 95$ at $\ell=6.05$ implies more rigorous two-sided bounds such that $2.16985670636<E_{0,0,0}<2.16985670695$. As another specific example, we examine the lowest three energy levels of the sextic oscillator

$$
\begin{equation*}
V(x, y, z)=x^{2}+y^{2}+z^{2}+v_{6}\left(x^{6}+y^{6}+z^{6}+6 x^{2} y^{2} z^{2}\right) \tag{3.2}
\end{equation*}
$$

Table 1. Lower and upper bounds to the ground-state eigenvalue of the quartic oscillator in (3.1), as a function of the confinement parameter ℓ.

ℓ	N	$E_{0,0,0}$
2.00	4	$1 / 3$
2.50	4	$2.105 / 228$
3.00	5	$2.1598 / 788$
3.50	6	$2.1686 / 710$
4.00	7	$2.16974 / 97$
4.50	9	$2.169847 / 66$
5.00	11	$2.1698561 / 74$
5.50	12	$2.16985668 / 73$
5.75	13	$2.169856700 / 14$
6.05	14	$2.16985670636 / 95$

Table 2. Lower and upper bounds to the first three eigenvalues of the sextic oscillator in (3.2) where $v_{6}=10^{6}$, as a function of the confinement parameter ℓ.

ℓ	N	$E_{0,0,0}$	$E_{0,0,1}=E_{0,1,0}=E_{1,0,0}$	$E_{1,1,0}=E_{1,0,1}=E_{0,1,1}$
0.325	5	$112 / 4$	$218 / 22$	$330 / 6$
0.350	5	$113.24 / 43$	$219 / 21$	$333 / 5$
0.375	6	$113.333 / 51$	$220.025 / 74$	$333.665 / 773$
0.400	7	$113.3423 / 33$	$220.0497 / 524$	$333.6998 / 7035$
0.425	9	$113.342760 / 87$	$220.051079 / 161$	$333.701666 / 778$
0.450	11	$113.34277357 / 97$	$220.05112077 / 202$	$333.70172321 / 491$
0.475	12	$113.3427737740 / 72$	$220.051121407 / 17$	$333.701724080 / 94$
0.485	13	$113.34277377518 / 23$	$220.0511214116 / 23$	$333.7017240866 / 76$

in the same manner to check if there is any difficulty in passing from a quartic oscillator to such a sextic oscillator with a very large v_{6} value of 10^{6} (table 2).

For the sake of a systematic numerical analysis, we may consider the general form of a quartic oscillator which is obtainable from (1.2) with $M=2$. If we assume the interchange symmetries in (1.5) of the coordinates and introduce a simple scaling transformation, this potential can be written concisely in the form
$V(x, y, z)=x^{2}+y^{2}+z^{2}+c_{4}\left[x^{4}+y^{4}+z^{4}+2 \alpha\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right)\right]$
involving only two effective coupling constants c_{4} and α. It is apparent that for a nonnegative quartic anharmonicity c_{4} should be necessarily positive. The case of $c_{4}=0$ leads to the harmonic oscillator which is trivial. Moreover, the condition

$$
\begin{equation*}
\alpha \geqslant-\frac{1}{2} \tag{3.4}
\end{equation*}
$$

is sufficient to make the potential bounded below. In the two-dimensional problems, it is possible to find unitary transformations which suggest that the eigenvalue equation can be investigated in the range of $\alpha,-1 \leqslant \alpha \leqslant 1$, without any loss of generality $[9,18]$. Unfortunately, however, there are no such transformations in three-dimensional space, and the only restriction on α is given by (3.4). Therefore, the lower and upper bound energy levels of the quartic oscillator are reported for c_{4} values of $10^{-3}, 1$, and 10^{3} in tables 3,4 and 5 , respectively, as a function of α by taking $\alpha=-\frac{1}{2}, 0,1$ and 10 .

Finally, we deal with the sextic oscillator in (1.2), where $v_{4}=0$ and $M=3$. On making use of a linear scaling and taking advantage of the interchange symmetries of the

Table 3. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where $c_{4}=10^{-3}$, as a function of α.

α	$\ell_{\text {cr }}$	N	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1} n_{2} n_{3}}$	Basis set
$-\frac{1}{2}$	5.50	11	$\{0,0,0\}$	$3.00149785140 / 1$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
	5.80	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.00349225984 / 5$	
	5.70	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.00449076408 / 10$	
	5.86	11	$\{0,0,2\}$	$7.00747181965 / 7$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
	5.87	11	$\{0,2,0\}-\{2,0,0\}$	$7.00896929402 / 3$	
	5.70	11	\{1, 1, 1\}	$9.00449188091 / 5$	$\begin{aligned} & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \end{aligned}$
	6.05	12	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}$	$9.00780218574 / 6$	
	6.05	12	$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$	$9.00897485587 / 9$	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	6.05	12	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	9.016592212 86/99	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
0	5.50	11	$\{0,0,0\}$	$3.00224607801 / 3$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+} \end{aligned}$
	5.70	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.00523713351 / 2$	
	5.80	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.00822818900 / 2$	
	5.90	12	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	$7.01120925811 / 6$	
	5.70	11	\{1, 1, 1\}	$9.01121924449 / 53$	
	6.05	12	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}-$	$9.01420031362 / 4$	$\begin{aligned} & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}- \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \end{aligned}$
			$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$		
	6.05	12	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	$9.02014997733 / 47$	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
1	5.50	11	$\{0,0,0\}$	$3.00373974816 / 8$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}- \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
	5.80	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.00871744447 / 8$	
	5.80	11	$\begin{aligned} & \{1,1,0\}-\{1,0,1\}-\{0,1,1\}- \\ & \{0,0,2\}-\{0,2,0\} \end{aligned}$	$7.01567591890 / 1$	
	5.80	11	$\{2,0,0\}$	$7.01865259202 / 10$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}- \end{aligned}$
	5.70	11	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}-$		
			\{1,1,1\} -	$9.02460935458 / 62$	$\mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+}-$
			$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$		$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	5.90	11	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	$9.02955952740 / 70$	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	5.90	11	$\{1,1,2\}-\{1,2,1\}-\{2,1,1\}-$		$\mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}-$
			$\{0,2,2\}-\{2,0,2\}-\{2,2,0\}-$	$11.0355119797 / 801$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}- \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
			$\{1,3,0\}-\{1,0,3\}-\{0,1,3\}$		
10	5.50	11	$\{0,0,0\}$	$3.01702055964 / 6$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
	5.80	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.03949641784 / 5$	
	6.00	12	$\{0,0,2\}-\{0,2,0\}$	$7.05511470035 / 7$	
	5.70	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.08116142704 / 6$	
	6.00	12	$\{2,0,0\}$	$7.08385317749 / 51$	
	6.00	12	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}$	9.082310599 92/7	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	6.00	12	$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$	$9.11591745233 / 5$	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	5.60	11	\{1, 1, 1\}	$9.14149501262 / 7$	$\begin{aligned} & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \end{aligned}$
	6.10	12	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	$9.14498894400 / 2$	

coordinates, we again minimize the number of coupling constants. So the potential is characterized by the function

$$
\begin{align*}
V(x, y, z)= & x^{2}+y^{2}+z^{2}+c_{6}\left[x^{6}+y^{6}+z^{6}+3 \beta\left(x^{4} y^{2}+x^{4} z^{2}+x^{2} y^{4}+x^{2} z^{4}+y^{4} z^{2}\right.\right. \\
& \left.\left.+y^{2} z^{4}\right)+6 \gamma x^{2} y^{2} z^{2}\right] \tag{3.5}
\end{align*}
$$

with three parameters c_{6}, β and γ. Here, $c_{6}>0$, and it can be shown after some algebra that

$$
\begin{equation*}
6 \beta+2 \gamma \geqslant-1 \tag{3.6}
\end{equation*}
$$

for a required non-negative sextic anharmonicity, if $\gamma \neq 1$. For $\gamma=1$, we must have

$$
\begin{equation*}
\beta \geqslant-\frac{1}{3} \tag{3.7}
\end{equation*}
$$

Table 4. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where $c_{4}=1$, as a function of α.

Therefore, we tabulate the lower and upper bound eigenvalues of (3.5) in tables (6), (7) and (8) for c_{6} values of $10^{-3}, 1$ and 10^{3}, respectively. Each table includes a set of β and γ parameters, such that
$(\beta, \gamma):\left\{\left(\frac{1}{6},-1\right),(1,-1),(10,-1),\left(\frac{1}{6}, 0\right),(0,0),(1,0),\left(\frac{1}{3}, 1\right),(0,1),(1,1)\right\}$
satisfying (3.6) and (3.7). Tables 3-8 also contain the quantum numbers $\left\{n_{1}, n_{2}, n_{3}\right\}$ of the energy levels and their respective basis sets, the truncation order N of the wavefunctions and the critical confinement ℓ_{cr}, at which the desired accuracy is obtained.

Table 5. Lower and upper bounds to the eigenvalues of the quartic oscillator in (3.3), where $c_{4}=10^{3}$, as a function of α.

α	$\ell_{\text {cr }}$	N	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1} n_{2} n_{3}}$	Basis set
$-\frac{1}{2}$	1.40	14	$\{0,0,0\}$	$26.9543888412 / 3$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
	1.32	13	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$48.6222585030 / 5$	
	1.36	13	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$65.3134293010 / 43$	
	1.40	14	$\{0,0,2\}$	$72.1581508000 / 15$	
	1.42	14	$\{1,1,1\}$	$76.3256877301 / 29$	
	1.44	14	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}$	$85.4195450627 / 73$	
	1.39	14	$\{0,2,0\}-\{2,0,0\}$	85.518934 5802/20	
	1.47	14	$\{1,1,2\}-\{1,2,1\}-\{2,1,1\}$	$96.3891071032 / 51$	
	1.44	14	\{0, 2, 2\}	$101.767899052 / 116$	
	1.28	13	$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$	$101.977458650 / 5$	
0	1.13	12	$\{0,0,0\}$	$31.9193661339 / 40$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+} \end{aligned}$
	1.12	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$59.3664108819 / 22$	
	1.12	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$86.8134556299 / 303$	
	1.13	12	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	95.960 $9816227 / 31$	
	1.10	11	\{1, 1, 1\}	$114.260500377 / 9$	
	1.12	12	$\begin{aligned} & \{0,2,1\}-\{0,1,2\}-\{1,0,2\}- \\ & \{2,0,1\}-\{2,1,0\}-\{1,2,0\} \end{aligned}$	$123.408026370 / 2$	$\begin{aligned} & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \end{aligned}$
	1.12	12	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	137.882 776355/65	
1	1.10	11	$\{0,0,0\}$	$38.0868334593 / 4$	$\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}$
	1.10	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$71.2177166315 / 7$	$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}$
	1.10	11	$\begin{aligned} & \{1,1,0\}-\{1,0,1\}-\{0,1,1\}- \\ & \{0,0,2\}-\{0,2,0\} \end{aligned}$	108.595 $258738 / 9$	$\mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}-$
	1.10	11	$\{2,0,0\}$	116.603198 937/8	$\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}$
	1.10	11	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}-$		$\mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+}-$
			$\{1,1,1\}-$	$149.439045580 / 1$	$\begin{aligned} & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+}- \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \end{aligned}$
			$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$		
	1.12	12	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	$160.514558044 / 7$	$\begin{aligned} & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}- \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}- \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
	1.10	11	$\{1,1,2\}-\{1,2,1\}-\{2,1,1\}-$		
			$\begin{aligned} & \{0,2,2\}-\{2,0,2\}-\{2,2,0\}- \\ & \{1,3,0\}-\{3,0,1\}-\{0,1,3\} \end{aligned}$	193.248820 645/6	
10	0.96	12	$\{0,0,0\}$	$62.4440775617 / 50$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{2} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{2} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{8}^{-} / \mathbb{S}_{8}^{+} \end{aligned}$
	1.02	14	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$115.453232019 / 21$	
	1.01	14	$\{0,0,2\}-\{0,2,0\}$	$159.492179901 / 31$	
	1.01	14	$\{2,0,0\}$	$182.424212632 / 701$	
	0.93	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$187.200352824 / 36$	
	1.03	14	$\{0,2,1\}-\{0,1,2\}-\{1,0,2\}$	$214.929362459 / 535$	
	1.02	14	$\{2,0,1\}-\{2,1,0\}-\{1,2,0\}$	248.733089 900/4	
	1.03	14	$\{0,0,3\}-\{0,3,0\}-\{3,0,0\}$	$265.057585588 / 668$	
	0.90	12	$\{1,1,1\}$	$268.739781544 / 52$	

4. Discussion

In this paper, an extensive numerical analysis of three-dimensional anharmonic oscillators is presented via the confined system which generates converging eigenvalue bounds. Tables 1 and 2 exhibit evidently the typical aspects of the method. First, the method can be applied equally well to the quartic and sextic oscillators. Second, the accuracy of the results can be improved by increasing appropriately the boundary parameter ℓ. Furthermore, it is deduced from tables 3-8 that there is no accuracy loss in a very wide range of the

Table 6. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where $c_{6}=10^{-3}$, as a function of β and γ.

γ	β	$\ell_{\text {cr }}$	N	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1} n_{2} n_{3}}$	Basis set
-1	$\frac{1}{6}$	5.50	11	$\{0,0,0\}$	$3.00591071155 / 6$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.50	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.01754967905 / 6$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.02914301381 / 3$	
		5.50	11	$\{0,0,2\}$	$7.05158442535 / 8$	
	1	5.25	10	$\{0,0,0\}$	$3.01135022949 / 50$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.50	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.03355855688 / 9$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.06930404110 / 1$	
		5.50	11	$\{0,0,2\}-\{0,2,0\}$	$7.07743603817 / 20$	
	10	5.00	10	$\{0,0,0\}$	$3.06369694256 / 7$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.25	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.17887972796 / 7$	
		5.25	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.40900607214 / 5$	
		5.25	11	$\{0,0,2\}-\{0,2,0\}$	$7.30465734101 / 7$	
0	$-\frac{1}{6}$	5.25	10	$\{0,0,0\}$	$3.00444081929 / 30$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.50	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.01319157600 / 1$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.01905672905 / 6$	
		5.50	11	$\{0,0,2\}$	$7.03876357582 / 6$	
	0	5.25	10	$\{0,0,0\}$	$3.00554644671 / 2$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.25	10	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.01647859181 / 6$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.02741073695 / 6$	
		5.50	11	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	$7.04849755691 / 5$	
	1	5.25	10	$\{0,0,0\}$	$3.01206732700 / 1$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.25	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.03565595221 / 2$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.07542433837 / 8$	
		5.50	11	$\{0,0,2\}-\{0,2,0\}$	$7.07945493954 / 6$	
1	$-\frac{1}{3}$	5.25	10	$\{0,0,0\}$		$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.50	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.01210476121 / 2$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.01726713797 / 9$	
		5.50	11	$\{0,0,2\}$	$7.03559153167 / 71$	
	0	5.25	10	$\{0,0,0\}$	$3.00628232043 / 5$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.50	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.01866631527 / 8$	
		5.50	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$7.03390625768 / 9$	
		5.50	11	$\{0,0,2\}-\{0,2,0\}$	$7.05063638605 / 8$	
	1	5.25	10	$\{0,0,0\}$	$3.01278096068 / 70$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}- \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		5.25	10	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$5.03773579350 / 3$	
		5.25	10	$\begin{aligned} & \{1,1,0\}-\{1,0,1\}-\{0,1,1\}- \\ & \{0,0,2\}-\{0,2,0\} \end{aligned}$	$7.08145996743 / 7$	
		5.50	11	$\{2,0,0\}$	$7.11009285585 / 7$	

anharmonicity constants. In fact, a significant property of this class of eigenvalue problems is the existence of two distinct regimes of values of the coupling constants and the quantum numbers. The two regimes are referred to as the nearly harmonic and the nearly pure anharmonic, respectively, for the small and large values of the eigenvalue parameters. It is well known that most of the numerical techniques are efficiently used in one of these regimes. Therefore, the confined system approach makes our method more versatile and applicable with uniform precision to almost any type of Schrödinger potential. We believe that the spectrum of a perturbed three-dimensional Hamiltonian in the present generality is computed for the first time.

Table 7. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where $c_{6}=1$, as a function of β and γ.

γ	β	$\ell_{\text {cr }}$	N	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1} n_{2} n_{3}}$	Basis set
-1	$\frac{1}{6}$	2.65	12	\{0,0,0\}	$4.34348616268 / 77$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.65	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$7.96370907844 / 73$	
		2.65	12	\{1, 1, 0\}- \{1, 0, 1\}-\{0, 1, 1\}	$11.4838042150 / 7$	
		2.65	12	\{0, 0,2$\}$	$12.8252666016 / 34$	
	1	2.65	10	$\{0,0,0\}$	$4.91966785501 / 2$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.65	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$9.21899165008 / 13$	
		2.65	11	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$14.0498740352 / 3$	
		2.65	11	$\{0,0,2\}-\{0,2,0\}$	$14.4166071509 / 13$	
	10	2.45	12	$\{0,0,0\}$	$7.06056158502 / 6$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
		2.45	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$13.4655298282 / 5$	
		2.45	12	$\{0,0,2\}-\{0,2,0\}$	19.782277 3035/59	
		2.38	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	21.803 $6236197 / 9$	
0	$-\frac{1}{6}$	2.70	12	$\{0,0,0\}$	$4.11645810902 / 21$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.77	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	7.447129679 96/9	
		2.77	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	10.509 $4048479 / 93$	
		2.77	12	$\{0,0,2\}$	$11.6800318516 / 46$	
	0	2.65	12	$\{0,0,0\}$	$4.30687385695 / 708$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.65	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$7.90464517551 / 95$	
		2.65	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$1.5024164940 / 9$	
		2.65	12	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	$12.8378712370 / 90$	
	1	2.61	12	$\{0,0,0\}$	$4.978778995 \text { 16/22 }$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.63	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$9.34318969939 / 49$	
		2.61	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$14.3337152290 / 2$	
		2.61	12	$\{0,0,2\}-\{0,2,0\}$	14.502 $8959025 / 41$	
1	$-\frac{1}{3}$	2.82	12	$\{0,0,0\}$	$4.06246455841 / 93$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.89	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$7.34283104038 / 75$	
		2.94	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$10.4365114346 / 55$	
		2.91	12	$\{0,0,2\}$	11.5666970923/59	
	0	2.63	12	$\{0,0,0\}$	$4.41724116594 / 613$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.63	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$8.16181973317 / 86$	
		2.63	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	12.100 $3076520 / 30$	
		2.63	12	$\{0,0,2\}-\{0,2,0\}$	13.0163182262/97	
	1	2.62	12	$\{0,0,0\}$	$5.03339593770 / 4$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}- \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		2.62	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$9.45553527677 / 91$	
		2.62	12	$\begin{aligned} & \{1,1,0\}-\{1,0,1\}-\{0,1,1\}- \\ & \{0,0,2\}-\{0,2,0\} \end{aligned}$	$14.5841329457 / 8$	
		2.62	12	$\{2,0,0\}$	15.989 $4407874 / 84$	

The crucial point of our approximation lies in the determination of a critical confinement size denoted by ℓ_{cr}, to achieve satisfactory results. We infer that this depends mainly on the dominant terms of the potential function and the quantum numbers of the state being considered. It is noteworthy that the required $\ell_{\text {cr }}$ values can be estimated roughly after a few computer experiments. As a matter of fact, it is unnecessary to find these values very precisely since the accuracy of the results is virtually the same in the near vicinity of a specific confinement. Obviously, because both lower and upper bounds are calculated simultaneously for a predicted ℓ_{cr}, there is no uncertainty in the tabulated eigenvalues. Hence, the numerical evaluations support completely the theoretical analysis in the appendix.

Table 8. Lower and upper bounds to the eigenvalues of the sextic oscillator in (3.5), where $c_{6}=10^{3}$, as a function of β and γ.

γ	β	$\ell_{\text {cr }}$	N	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1} n_{2} n_{3}}$	Basis set
-1	$\frac{1}{6}$	1.13	12	$\{0,0,0\}$	$19.7132194856 / 62$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.14	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$37.8064508817 / 22$	
		1.14	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$55.0667905505 / 47$	
		1.15	13	$\{0,0,2\}$	$63.4913368818 / 84$	
	1	1.10	12	$\{0,0,0\}$	$23.7692362930 / 6$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.12	11	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$46.2774840394 / 415$	
		1.10	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	71.995675 5242/9	
		1.11	12	$\{0,0,2\}-\{0,2,0\}$	$74.2821903355 / 414$	
	10	1.03	12	$\{0,0,0\}$	$37.1484228147 / 55$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \end{aligned}$
		1.03	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$72.0486477728 / 76$	
		1.03	12	$\{0,0,2\}-\{0,2,0\}$	106.329 189 226/74	
		1.01	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	118.291434651/2	
0	$-\frac{1}{6}$	1.17	12	$\{0,0,0\}$	$17.9549098211 / 25$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.19	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$33.9959118980 / 99$	
		1.21	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$48.1722834377 / 406$	
		1.22	13	$\{0,0,2\}$	$55.3815093761 / 998$	
	0	1.15	12	$\{0,0,0\}$	$19.4770503970 / 3$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.15	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$37.5100163517 / 20$	
		1.15	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	55.542982 3064/7	
		1.15	12	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	$64.1671803713 / 74$	
	1	1.12	12	$\{0,0,0\}$	$24.1642926621 / 3$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.12	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$47.0732791739 / 43$	
		1.12	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$73.7704658095 / 6$	
		1.12	12	$\{0,0,2\}-\{0,2,0\}$	$74.8173797500 / 22$	
1	$-\frac{1}{3}$	1.27	13	$\{0,0,0\}$		$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.27	13	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$33.3423283679 / 847$	
		1.30	13	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	$48.0391352733 / 837$	
		1.31	13	$\{0,0,2\}$	$55.2298968870 / 964$	
	0	1.15	12	$\{0,0,0\}$	20.306 $2329130 / 2$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.15	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$39.3461027851 / 2$	
		1.14	12	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	59.615 $9365807 / 14$	
		1.15	12	$\{0,0,2\}-\{0,2,0\}$	$65.3809147609 / 59$	
	1	1.12	12	$\{0,0,0\}$	$24.5253160869 / 70$	$\begin{aligned} & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{2}^{-} / \mathbb{S}_{2}^{+}-\mathbb{S}_{3}^{-} / \mathbb{S}_{3}^{+}-\mathbb{S}_{4}^{-} / \mathbb{S}_{4}^{+} \\ & \mathbb{S}_{5}^{-} / \mathbb{S}_{5}^{+}-\mathbb{S}_{6}^{-} / \mathbb{S}_{6}^{+}-\mathbb{S}_{7}^{-} / \mathbb{S}_{7}^{+}- \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+}-\mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \\ & \mathbb{S}_{1}^{-} / \mathbb{S}_{1}^{+} \end{aligned}$
		1.12	12	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	$47.7850198802 / 6$	
		1.12	12	$\begin{aligned} & \{1,1,0\}-\{1,0,1\}-\{0,1,1\}- \\ & \{0,0,2\}-\{0,2,0\} \end{aligned}$	$75.3184786376 / 7$	
		1.12	12	$\{2,0,0\}$	84.175 $5837757 / 75$	

It is shown from (2.23) that a truncated wavefunction of order N leads to a matrix eigenvalue problem of order N^{3}. Since the diagonalization of a large matrix is highly time consuming, we content ourselves with a truncation size of about 12 to 13 , which yields approximately 12 significant figures accuracy. Certainly, more accurate results can be obtained at the cost of greater computation times. Another remark is that the convergence rates of the Dirichlet and Neumann basis sets in (2.6) and (2.7) are almost equivalent.

For $\alpha=1$ and $\beta=\gamma=1$, we have the isotropic quartic and the sextic oscillators, respectively. Therefore, the Schrödinger equation (1.1) can be treated in spherical polar coordinates by the separation of variables proposing a solution of the type $\Psi(r, \theta, \phi)=$
$\mathcal{R}(r) P_{l}^{m}(\theta) \mathrm{e}^{\mathrm{i} m \phi}$. Here, $P_{l}^{m}(\theta)$ with $l \geqslant|m|$ are the associated Legendre functions, and $\mathcal{R}(r)$ satisfies the radial Schrödinger equation

$$
\begin{equation*}
\left\{r^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+2 r \frac{\mathrm{~d}}{\mathrm{~d} r}+r^{2}[E-V(r)]-l(l+1)\right\} \mathcal{R}(r)=0 . \tag{4.1}
\end{equation*}
$$

In this representation, each energy level is independent of the magnetic quantum number m, $m=0, \pm 1, \pm 2, \ldots, \pm l$, and thus $(2 l+1)$-fold degenerate. The spectrum then contains non-degenerate eigenvalues corresponding to $l=0$, threefold degenerate eigenvalues corresponding to $l=1$ and so on. This structure in the spherically symmetric cases can be seen clearly from our tables. However, the computation of the spectrum directly from (4.1) is an ongoing study. In fact, separate and particular research into the radial Schrödinger equation along this line seems to be quite interesting since it bears a different mathematical character.

Another special situation occurs when $\alpha=0$ and $\beta=\gamma=0$ for the quartic and sextic perturbations in (3.3) and (3.5), respectively. In these cases the problem reduces to three independent quartic or sextic anharmonic oscillators. As a result, the energy levels are expressible as

$$
\begin{equation*}
E_{n_{1} n_{2} n_{3}}=E_{n_{1}}+E_{n_{2}}+E_{n_{3}} \tag{4.2}
\end{equation*}
$$

where $E_{n_{i}}(i=1,2,3)$ denote the eigenvalues of the relevant problem in one dimension. Equation (4.2) implies that the different permutations of a fixed set of quantum numbers $\left\{n_{1}, n_{2}, n_{3}\right\}$ indicate the same energy, a property which clarifies the degeneracies of the spectrum of the system. Hence the eigenvalues are either single if $n_{1}=n_{2}=n_{3}$ or threefold degenerate if $n_{i}=n_{j} \neq n_{k}(i, j, k=1,2,3)$ or sixfold degenerate if $n_{1} \neq n_{2} \neq n_{3}$.

Apart from the particular forms of the potentials, we observe that the mixed parity states are threefold degenerate throughout. These energy levels with two even plus one odd and with one even plus two odd quantum numbers are determined by the sets $\mathbb{S}_{2}^{+}\left(\mathbb{S}_{2}^{-}\right)$, $\mathbb{S}_{3}^{+}\left(\mathbb{S}_{3}^{-}\right), \mathbb{S}_{4}^{+}\left(\mathbb{S}_{4}^{-}\right)$and $\mathbb{S}_{5}^{+}\left(\mathbb{S}_{5}^{-}\right), \mathbb{S}_{6}^{+}\left(\mathbb{S}_{6}^{-}\right), \mathbb{S}_{7}^{+}\left(\mathbb{S}_{7}^{-}\right)$, respectively. The eigenvalues with the same parity yielded by the sets $\mathbb{S}_{1}^{+}\left(\mathbb{S}_{1}^{-}\right)$and $\mathbb{S}_{8}^{+}\left(\mathbb{S}_{8}^{-}\right)$are either single or doubly degenerate in a three-dimensional system. This can easily be attributed to the interchange symmetries of the potential functions considered numerically in this work.

On the other hand, in the case where $\alpha=0$ and, therefore, (3.3) reduces to three independent quartic oscillators, additional checks on the reliability and consistency of our two-sided bounds are provided by making use of the numerical results of one dimension. Indeed, very accurate eigenvalues are numerically known for $V(x)=x^{2}+c_{4} x^{4}[2,5]$, the first three of which, performed in [2] by Banerjee, are listed in table 9. The energy levels determined by the relation (4.2) are then compared in table 10 with the current eigenvalue bounds estimated by the three-dimensional treatment of the problem. Fortunately, the results are in excellent agreement for all states and anharmonicity constants. Moreover, the onedimensional sextic oscillator Hamiltonian

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+v_{2} x^{2}+v_{4} x^{4}+v_{6} x^{6}\right) \Psi=E \Psi \quad \lim _{x \rightarrow \pm \infty} \Psi(x)=0 \tag{4.3}
\end{equation*}
$$

is an example of quasi-exactly solvable system provided that suitable algebraic relations between the coupling constants hold. For instance, the ground-state eigenfunction is

$$
\begin{equation*}
\Psi_{0}(x)=\mathrm{e}^{-\frac{1}{4} A x^{4}-\frac{1}{2} B x^{2}} \quad A=\sqrt{v_{6}}>0 \quad B=\frac{1}{2} v_{4} v_{6}^{-1 / 2} \tag{4.4}
\end{equation*}
$$

with the corresponding energy

$$
\begin{equation*}
E_{0}=B \tag{4.5}
\end{equation*}
$$

Table 9. The numerically exact eigenvalues of the one-dimensional quartic oscillator $V(x)=$ $x^{2}+c_{4} x^{4}$, as a function of c_{4}. Data are taken from [2].

c_{4}	E_{0}	E_{1}	E_{2}
10^{-3}	1.000748692673	3.003739748168	5.009711872788
1	1.392351641530	4.648812704212	8.655049957759
10^{3}	10.63978871133	38.08683345938	74.68140420016

Table 10. The comparison of the current eigenvalue bounds for the potential $V(x, y, z)=$ $x^{2}+y^{2}+z^{2}+c_{4}\left(x^{4}+y^{4}+z^{4}\right)$ representing three independent quartic oscillators, with results of the one-dimensional case. The results for $E_{n_{1}}+E_{n_{2}}+E_{n_{3}}$ with $n_{1}, n_{2}, n_{3}=0,1,2$ are calculated from table 9, while those for $E_{n_{1} n_{2} n_{3}}^{-}$and $E_{n_{1} n_{2} n_{3}}^{+}$stand for the lower and upper bounds, respectively, in our tables 3,4 and 5 , where $\alpha=0$.

c_{4}	$\left\{n_{1}, n_{2}, n_{3}\right\}$	$E_{n_{1}}+E_{n_{2}}+E_{n_{3}}$	$E_{n_{1} n_{2} n_{3}}^{-} / E_{n_{1} n_{2} n_{3}}^{+}$
10^{-3}	$\{0,0,0\}$	3.002246078019	$3.00224607801 / 3$
	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	5.005237133514	$5.00523713351 / 2$
	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	7.008228189009	$7.00822818900 / 2$
	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	7.011209258134	$7.01120925811 / 6$
	$\{1,1,1\}$	9.011219244504	$9.01121924449 / 53$
1	$\{0,0,0\}$	4.177054924590	$4.17705492459 / 60$
	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	7.433515987272	$7.43351598726 / 9$
	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	10.68997704995	$10.6899770499 / 500$
	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	11.43975324082	$11.4397532407 / 10$
	$\{1,1,1\}$	13.94643811264	$13.9464381126 / 7$
10^{3}	$\{0,0,0\}$	31.91936613398	$31.9193661339 / 40$
	$\{0,0,1\}-\{0,1,0\}-\{1,0,0\}$	59.36641088204	$59.3664108819 / 22$
	$\{1,1,0\}-\{1,0,1\}-\{0,1,1\}$	86.81345563009	$86.8134556299 / 303$
	$\{0,0,2\}-\{0,2,0\}-\{2,0,0\}$	95.96098162282	$95.9609816227 / 31$
	$\{1,1,1\}$	114.2605003781	$114.260500377 / 9$

for the special values of $v_{2}, v_{2}=B^{2}-3 A$, as may be verified directly. In particular, for $v_{6}=1$ and $v_{4}=4$ we see that v_{2} must be taken as 1 and that $E_{0}=2$. Thus the relation (4.2) now suggests that the lowest eigenvalue of the potential

$$
\begin{equation*}
V(x, y, z)=x^{2}+y^{2}+z^{2}+4\left(x^{4}+y^{4}+z^{4}\right)+x^{6}+y^{6}+z^{6} \tag{4.6}
\end{equation*}
$$

representing three independent sextic oscillators, can be found analytically such that $E_{0,0,0}=6$. Table 11 demonstrates the rate of convergence of the lower and upper bounds in this case, as a function of ℓ, which clarifies once more the accuracy of the present method.

In the second special case of the spherically symmetrical potentials for which $a_{m-l, l-k, k}=1$ for all m, l, k in (1.2), the substitution of $r^{2}=x^{2}+y^{2}+z^{2}$ transforms $V(x, y, z)$ into a function $V(r)$ of a single variable, i.e.

$$
\begin{equation*}
V(r)=\sum_{m=1}^{M} v_{2 m} r^{2 m} \tag{4.7}
\end{equation*}
$$

and, hence, the eigenvalues of the original equation can be examined by the radial Schrödinger equation in (4.1). As we pointed out earlier, potentials (3.3) and (3.5) are

Table 11. Convergence rates of eigenvalue bounds as a function of ℓ, for the ground-state energy of the sextic oscillator in (4.6), which is determined analytically, i.e. $E_{0,0,0}=6$, in the unbounded domain.

ℓ	N	$E_{0,0,0}^{-}(\ell)$	$E_{0,0,0}^{+}(\ell)$
1.00	5	3.3	8.4
1.50	5	5.933	6.051
1.75	5	5.9980	6.0017
2.00	7	5.999986	6.000014
2.25	9	5.999999982	6.000000018
2.30	10	5.999999996	6.000000004
2.35	11	5.9999999993	6.0000000007
2.40	11	5.99999999988	6.00000000012
2.45	12	5.999999999982	6.000000000018
2.50	13	5.9999999999974	6.0000000000025

examples of this case when $\alpha=1$ and $\beta=\gamma=1$, respectively. It can be deduced that our bounds in tables $3-5$ with $\alpha=1$ are very good and consistent with the results of the isotropic quartic oscillator already available in the literature [20-22]. Note that the notation of the authors of $[20,21]$ differ from that of the present paper so that their anharmonicity constants and eigenvalues should either be divided or multiplied by 2 , or vice versa. We have not introduced, however, any numerical table for a particular comparison in order not to overfill the content of the paper with tabular material. Moreover, the eigensolutions of the sextic oscillators $V(r)=v_{2} r^{2}+v_{4} r^{4}+v_{6} r^{6}$ can be derived analytically for special values of the parameters, similar to those of the one-dimensional case. The confidence in the accuracy of our two-sided bounds has also been reconfirmed by utilizing exact results so determined.

In conclusion, the accurate results presented in the tables provide a rich information about the spectral properties, which may be regarded as a guide to future numerical methods to be developed for solving three-dimensional eigenvalue problems of this kind. It is worth noting that the applicability of our method is not limited by the examples which are numerically studied here. In contrast, the algorithm is sufficiently general in its structure to incorporate any physical, more interesting, potentials having convergent power series expansions about the origin. This follows from the fact that such potentials can approximately be characterized by the arbitrary polynomial in (1.2), for which the method is established. Note also that we are interested only in the energetic structure of the Schrödinger Hamiltonians calculating the spectral points. The eigenfunctions may be examined as well to shed some light on the global behaviour of the system. For instance, we have perceived, from table 1 , that the rate of convergence of the successive approximations, as N and ℓ increase, is relatively slow for the eigenvalues of the potential (1.3), which is perhaps an example of a chaotic system. Now that we are encouraged by the success of the confined system approximation, more interesting problems such as chaotic Hamiltonians will be investigated in the near future.

Acknowledgments

The authors are grateful to the referees for making valuable comments and suggestions for the improvement of the paper. The discussion in the last three paragraphs follows suggestions by the referees.

Appendix. Variation of eigenvalues with respect to the confinement parameter in the Dirichlet and Neumann problems

It is obvious that the eigensolutions of the enclosed Schrödinger equation (1.1), in which \mathbb{R}^{3} is replaced by Ω, depend on the boundary parameter ℓ. Therefore, any normalized eigenfunction and the corresponding eigenvalue may be denoted by

$$
\begin{equation*}
\Psi=\Psi(x, y, z ; \ell) \tag{A.1}
\end{equation*}
$$

and

$$
\begin{equation*}
E=E(\ell) \tag{A.2}
\end{equation*}
$$

respectively. Now, we present a theoretical analysis on the behaviour of $E(\ell)$ when the wavefunction satisfies the Dirichlet and Neumann boundary conditions. Rewriting equation (1.1) in the form

$$
\begin{equation*}
\mathcal{L} \Psi=0 \quad \mathcal{L}=-\nabla^{2}+V(x, y, z)-E(\ell) \tag{A.3}
\end{equation*}
$$

on differentiating both sides with respect to ℓ, we obtain

$$
\begin{equation*}
\Psi \frac{\mathrm{d} E}{\mathrm{~d} \ell}=\mathcal{L} \Psi_{\ell} \tag{A.4}
\end{equation*}
$$

If we multiply (A.4) by Ψ and integrate over the three-dimensional space Ω, it follows immediately that

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left\langle\mathcal{L} \Psi_{\ell}, \Psi\right\rangle \tag{A.5}
\end{equation*}
$$

where ket and bra notation stands for the inner product. Introducing the formal adjoint of the operator \mathcal{L}, we then find that

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\text { surface integral terms }+\left\langle\Psi_{\ell}, \mathcal{L}^{\star} \Psi\right\rangle \tag{A.6}
\end{equation*}
$$

in which the inner product on the right-hand side vanishes from (A.3) since \mathcal{L} is formally self-adjoint with $\mathcal{L}^{\star}=\mathcal{L}$. Thus we have

$$
\begin{gather*}
\frac{\mathrm{d} E}{\mathrm{~d} \ell}=\left.\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left(\Psi_{x} \Psi_{\ell}-\Psi \Psi_{x \ell}\right)\right|_{x=-\ell} ^{\ell} \mathrm{d} y \mathrm{~d} z+\left.\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left(\Psi_{y} \Psi_{\ell}-\Psi \Psi_{y \ell}\right)\right|_{y=-\ell} ^{\ell} \mathrm{d} x \mathrm{~d} z \\
\quad+\left.\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left(\Psi_{z} \Psi_{\ell}-\Psi \Psi_{z \ell}\right)\right|_{z=-\ell} ^{\ell} \mathrm{d} x \mathrm{~d} y \tag{A.7}
\end{gather*}
$$

which may be simplified by using the boundary conditions.
In order to understand the meaning of partial derivatives with respect to ℓ, let us first consider the total differential of $\Psi(x, y, z ; \ell)$,

$$
\begin{equation*}
\mathrm{d} \Psi=\Psi_{x} \mathrm{~d} x+\Psi_{y} \mathrm{~d} y+\Psi_{z} \mathrm{~d} z+\Psi_{\ell} \mathrm{d} \ell \tag{A.8}
\end{equation*}
$$

Nevertheless if, for instance, x is a function of $\ell, x=f(\ell)$, then $\mathrm{d} x=(\mathrm{d} f / \mathrm{d} \ell) \mathrm{d} \ell$ and hence

$$
\begin{equation*}
\mathrm{d} \Psi=\Psi_{y} \mathrm{~d} y+\Psi_{z} \mathrm{~d} z+\left(\Psi_{\ell}+\frac{\mathrm{d} f}{\mathrm{~d} \ell} \Psi_{x}\right) \mathrm{d} \ell \tag{A.9}
\end{equation*}
$$

implying the operational equivalence

$$
\begin{equation*}
\Psi_{\ell}=\Psi_{\ell}+\frac{\mathrm{d} f}{\mathrm{~d} \ell} \Psi_{x} \tag{A.10}
\end{equation*}
$$

Here, Ψ_{ℓ} on the left-hand side should be regarded as the partial derivative of the function $\Psi[f(\ell), y, z ; \ell]$ of ℓ, y and z only. So

$$
\begin{equation*}
\Psi_{\ell}=\Psi_{\ell} \mp \Psi_{x} \tag{A.11}
\end{equation*}
$$

when $x=f(\ell)=\mp \ell$. Likewise, we see that

$$
\begin{equation*}
\Psi_{\ell}=\Psi_{\ell} \mp \Psi_{y} \quad \text { and } \quad \Psi_{\ell}=\Psi_{\ell} \mp \Psi_{z} \tag{A.12}
\end{equation*}
$$

when $y=\mp \ell$ and $z=\mp \ell$, respectively. In accordance with (A.11) and (A.12), the partial differentiation with respect to ℓ of the Dirichlet conditions in (1.7) and the Neumann conditions in (1.8) lead to the equations

$$
\begin{align*}
& \Psi_{\ell}(\mp \ell, y, z) \mp \Psi_{x}(\mp \ell, y, z)=0 \\
& \Psi_{\ell}(x, \mp \ell, z) \mp \Psi_{y}(x, \mp \ell, z)=0 \tag{A.13}\\
& \Psi_{\ell}(x, y, \mp \ell) \mp \Psi_{z}(x, y, \mp \ell)=0
\end{align*}
$$

and

$$
\begin{align*}
& \Psi_{x \ell}(\mp \ell, y, z) \mp \Psi_{x x}(\mp \ell, y, z)=0 \\
& \Psi_{y \ell}(x, \mp \ell, z) \mp \Psi_{y y}(x, \mp \ell, z)=0 \tag{A.14}\\
& \Psi_{z \ell}(x, y, \mp \ell) \mp \Psi_{z z}(x, y, \mp \ell)=0
\end{align*}
$$

respectively. Therefore, in the case of the Dirichlet problem, substitution of Ψ_{ℓ} from (A.14) into (A.7) gives

$$
\begin{align*}
\frac{\mathrm{d} E^{+}}{\mathrm{d} \ell}=-\int_{-\ell}^{\ell} & \int_{-\ell}^{\ell}\left[\Psi_{x}^{2}(\ell, y, z)+\Psi_{x}^{2}(-\ell, y, z)\right] \mathrm{d} y \mathrm{~d} z \\
& -\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[\Psi_{y}^{2}(x, \ell, z)+\Psi_{y}^{2}(x,-\ell, z)\right] \mathrm{d} x \mathrm{~d} z \\
& -\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[\Psi_{z}^{2}(x, y, \ell)+\Psi_{z}^{2}(x, y,-\ell)\right] \mathrm{d} x \mathrm{~d} y \tag{A.15}
\end{align*}
$$

from which (1.9) is obtained by exploiting the reflection symmetries of the wavefunction. In any case, however, we have shown that

$$
\begin{equation*}
\frac{\mathrm{d} E^{+}}{\mathrm{d} \ell}<0 \tag{A.16}
\end{equation*}
$$

which completes the proof on the decreasing behaviour of $E^{+}(\ell)$.
If we use the Neumann conditions (1.8) and the relations in (A.15), equation (A.7) takes the form

$$
\begin{align*}
& \frac{\mathrm{d} E^{-}}{\mathrm{d} \ell}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[\Psi(\ell, y, z) \Psi_{x x}(\ell, y, z)+\Psi(-\ell, y, z) \Psi_{x x}(-\ell, y, z)\right] \mathrm{d} y \mathrm{~d} z \\
&+\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[\Psi(x, \ell, z) \Psi_{y y}(x, \ell, z)+\Psi(x,-\ell, z) \Psi_{y y}(x,-\ell, z)\right] \mathrm{d} x \mathrm{~d} z \\
&+\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left[\Psi(x, y, \ell) \Psi_{z z}(x, y, \ell)+\Psi(x, y,-\ell) \Psi_{z z}(x, y,-\ell)\right] \mathrm{d} x \mathrm{~d} y . \tag{A.17}
\end{align*}
$$

Furthermore, examining the first integral

$$
\begin{equation*}
I_{1}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell} \Psi(\ell, y, z) \Psi_{x x}(\ell, y, z) \mathrm{d} y \mathrm{~d} z \tag{A.18}
\end{equation*}
$$

in (A.17) we may derive a more useful expression for $\mathrm{d} E^{-} / \mathrm{d} \ell$. Indeed, from (A.3), I_{1} can be put in the form

$$
\begin{align*}
I_{1}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}[& \left.V(\ell, y, z)-E^{-}\right] \Psi^{2}(\ell, y, z) \mathrm{d} y \mathrm{~d} z \\
& \quad-\int_{-\ell}^{\ell} \int_{-\ell}^{\ell} \Psi(\ell, y, z)\left[\Psi_{y y}(\ell, y, z)+\Psi_{z z}(\ell, y, z)\right] \mathrm{d} y \mathrm{~d} z \tag{A.19}
\end{align*}
$$

for which the last term is integrated by parts to obtain
$I_{1}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(\ell, y, z)-E^{-}\right] \Psi^{2}(\ell, y, z)+\Psi_{y}^{2}(\ell, y, z)+\Psi_{z}^{2}(\ell, y, z)\right\} \mathrm{d} y \mathrm{~d} z$.
Other integrals are evaluated by repeating the same process, and, therefore, equation (A.17) becomes

$$
\begin{align*}
& \frac{\mathrm{d} E^{-}}{\mathrm{d} \ell}=\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(\ell, y, z)-E^{-}\right] \Psi^{2}(\ell, y, z)+\Psi_{y}^{2}(\ell, y, z)+\Psi_{z}^{2}(\ell, y, z)\right. \\
&\left.+\left[V(-\ell, y, z)-E^{-}\right] \Psi^{2}(-\ell, y, z)+\Psi_{y}^{2}(-\ell, y, z)+\Psi_{z}^{2}(-\ell, y, z)\right\} \mathrm{d} y \mathrm{~d} z \\
&+\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(x, \ell, z)-E^{-}\right] \Psi^{2}(x, \ell, z)+\Psi_{x}^{2}(x, \ell, z)+\Psi_{z}^{2}(x, \ell, z)\right. \\
&\left.+\left[V(x,-\ell, z)-E^{-}\right] \Psi^{2}(x,-\ell, z)+\Psi_{x}^{2}(x,-\ell, z)+\Psi_{z}^{2}(x,-\ell, z)\right\} \mathrm{d} x \mathrm{~d} z \\
&+\int_{-\ell}^{\ell} \int_{-\ell}^{\ell}\left\{\left[V(x, y, \ell)-E^{-}\right] \Psi^{2}(x, y, \ell)+\Psi_{x}^{2}(x, y, \ell)+\Psi_{y}^{2}(x, y, \ell)\right. \\
&\left.+\left[V(x, y,-\ell)-E^{-}\right] \Psi^{2}(x, y,-\ell)+\Psi_{x}^{2}(x, y,-\ell)+\Psi_{y}^{2}(x, y,-\ell)\right\} \mathrm{d} x \mathrm{~d} y \tag{A.21}
\end{align*}
$$

Under the assumption that the wavefunction possesses the reflection symmetries, this equation reduces to the form of (1.10). Consequently,

$$
\begin{equation*}
\frac{\mathrm{d} E^{-}}{\mathrm{d} \ell}>0 \tag{A.22}
\end{equation*}
$$

subject to the sufficient condition that $|\ell|$ is beyond the classical turning points.

References

[1] Hioe F T, MacMillen D and Montroll E W 1976 J. Math. Phys. 171320
[2] Banerjee K 1978 Prog. R. Soc. Lond. A 364265
[3] Blankenbecler R, DeGrant T and Sugar R L 1980 Phys. Rev. D 211055
[4] Killingbeck J, Jones M N and Thompson M J 1985 J. Phys. A: Math. Gen. 18793
[5] Taşeli H and Demiralp M 1988 J. Phys. A: Math. Gen. 213903
[6] Handy C R 1995 Phys. Rev. A 523468
[7] Vrscay E R and Handy C R 1989 J. Phys. A: Math. Gen. 22823
[8] Banks T, Bender C M and Wu T T 1973 Phys. Rev. D 83346
[9] Hioe F T, MacMillen D and Montroll E W 1978 Phys. Rep. 43305
[10] Ari N and Demiralp M 1985 J. Math. Phys. 261179
[11] Fernandez F M, Meson A M and Castro E A 1985 Phys. Lett. 112A 107
[12] Witwit M R M 1992 J. Math. Phys. 334196
[13] Bender C M and Wu T T 1969 Phys. Rev. 1841231
[14] Witwit M R M 1992 J. Math. Phys. 332779
[15] Taşeli H 1992 J. Comput. Phys. 101252
[16] Taşeli H and Eid R 1996 Int. J. Quantum Chem. 59183
[17] Taşeli H 1996 Int. J. Quantum Chem. 60641
[18] Taşeli H and Eid R 1996 J. Phys. A: Math. Gen. 296967
[19] Taşeli H and Zafer A 1997 Int. J. Quantum Chem. 61759
[20] Seetharaman M and Vasan S S 1986 J. Math. Phys. 271031
[21] Lakshmanan M, Kaliappan P, Larsson K, Karlsson F and Fröman P O 1994 Phys. Rev. A 493296
[22] Taşeli H 1996 J. Math. Chem. 20235

